CMPS 2200 - Fall 2014

Divide-and-Conquer Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems of sizes that are fractions of the original problem size.
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

$$
\begin{array}{lllllll}
3 & 5 & 7 & 8 & 9 & 12 & 15
\end{array}
$$

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
357
$\begin{array}{llll}8 & 9 & 12 & 15\end{array}$

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
357
$8 \quad 9 \quad 12 \quad 15$

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

$$
\begin{array}{lllllll}
3 & 5 & 7 & 8 & 9 & 12 & 15
\end{array}
$$

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

$$
\begin{array}{lllllll}
3 & 5 & 7 & 8 & 9 & 12 & 15
\end{array}
$$

Merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays of size $n / 2$
3. Combine: Linear-time key subroutine Merge

Merge-Sort (A[0 . . n-1])

1. If $n=1$, done.
2. Merge-Sort (A[$0 \ldots\lceil n / 2\rceil-1])$
3. Merge-Sort (A[[n/2ך..n-1])
4. "Merge" the 2 sorted lists.

Merging two sorted arrays

$20 \quad 12$	2012	2012	$20 \quad 12$	$20 \quad 12$	20 (12)
1311	1311	1311	1311	13 (11)	13
$7 \quad 9$	$7 \quad 9$	(7) 9	(9)	,	
2	2		1	1	1
1	2	7	9	11	12

Time $d n \in \Theta(n)$ to merge a total of n elements (linear time).

Analyzing merge sort

$T(n)$
d_{0}
$T(n / 2)$
$T(n / 2)$
dn

Merge-Sort (A[0 . . n-1])

1. If $n=1$, done.
2. Merge-Sort (A[$0 \ldots\lceil n / 27+1])$
3. Merge-Sort (A[[n/2ך..n-1])
4. "Merge" the 2 sorted lists.

Sloppiness: Should be $T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)$, but it turns out not to matter asymptotically.

Recurrence for merge sort

$$
T(n)=\left\{\begin{array}{l}
d_{0} \text { if } n=1 \\
2 T(n / 2)+d n \text { if } n>1
\end{array}\right.
$$

- But what does $T(n)$ solve to? I.e., is it $\mathrm{O}(n)$ or $\mathrm{O}\left(n^{2}\right)$ or $\mathrm{O}\left(n^{3}\right)$ or \ldots ?

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

$$
T(n)
$$

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Mergesort Conclusions

- Merge sort runs in $\Theta(n \log n)$ time.
- $\Theta(n \log n)$ grows more slowly than $\Theta\left(n^{2}\right)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for $n>30$ or so. (Why not earlier?)

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- It is good for generating guesses of what the runtime could be.

But: Need to verify that the guess is correct. \rightarrow Induction (substitution method)

Substitution method

The most general method to solve a recurrence (prove O and Ω separately):

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)
2. Verify by induction (inductive step).
3. Solve for O-constants n_{0} and c (base case of induction)
