CMPS 2200 - Fall 2014

B-trees

Carola Wenk

External memory dictionary

Task: Given a large amount of data that does not fit into main memory, process it into a dictionary data structure

- Need to minimize number of disk accesses
- With each disk read, read a whole block of data
- Construct a balanced search tree that uses one disk block per tree node
- Each node needs to contain more than one key

k-ary search trees

A k-ary search tree T is defined as follows:
-For each node x of T:

- x has at most k children (i.e., T is a k-ary tree)
- x stores an ordered list of pointers to its children, and an ordered list of keys
- For every internal node: \#keys = \#children-1
- x fulfills the search tree property:
keys in subtree rooted at i-th child $\leq i$-th key $<$ keys in subtree rooted at $(i+1)$-st child

Example of a 4-ary tree

Example of a 4-ary search tree

B-tree

A \boldsymbol{B}-tree T with minimum degree $k \geq 2$ is defined as follows:

1. T is a $(2 k)$-ary search tree
2. Every node, except the root, stores at least k-1 keys
(every internal non-root node has at least k children)
3. The root must store at least one key
4. All leaves have the same depth

B-tree with $k=2$

1. T is a $(2 k)$-ary search tree

B-tree with $k=2$

2. Every node, except the root, stores at least k-1 keys

B-tree with $k=2$

3. The root must store at least one key

B-tree with $k=2$

4. All leaves have the same depth

B-tree with $k=2$

Remark: This is a 2-3-4 tree.

Height of a B-tree

Theorem: For a B-tree with minimum degree $k \geq 2$ which stores n keys and has height h holds:

$$
h \leq \log _{k}(n+1) / 2
$$

Proof: \#nodes $\geq 1+2+2 k+2 k^{2}+\ldots+2 k^{h-1}$ level 1 level 3
level 0 level 2
$n=\#$ keys $\geq 1+(k-1) \sum_{i=0}^{h-1} 2 k^{i}=1+2(k-1) \cdot \frac{k^{h}-1}{k-1}=2 k^{h}-1$

B-tree search

B-Tree-Search(x,key)

$i \leftarrow 1$
while $i<\#$ keys of x and key $>i$-th key of x
do ${ }^{+}++$
if $i<\#$ keys of x and $k e y=i$-th key of x then return (x, i)
if x is a leaf
then return NIL
else $b=$ DISK-READ (i-th child of x)
return B-Tree-Search(b,key)

B-tree search runtime

- $O(k)$ per node
- Path has height $h=O\left(\log _{k} n\right)$
- CPU-time: $O\left(k \log _{k} n\right)$
- Disk accesses: $O\left(\log _{k} n\right)$
disk accesses are more expensive than CPU time

B-tree insert

- There are different insertion strategies. We just cover one of them
- Make one pass down the tree:
- The goal is to insert the new key into a leaf
- Search where key should be inserted
- Only descend into non-full nodes:
- If a node is full, split it. Then continue descending.
- Splitting of the root node is the only way a Btree grows in height

B-TREE-SPLIT-CHILD (x, i, y)

has $2 k-1$ keys

- Split full node y into two nodes y and z of $k-1$ keys
- Median key S of y is moved up into y 's parent x
- Example below for $k=4$

Split root: B-Tree-Split-ChiLD(s,1,r)

- The full root node r is split in two.
- A new root node s is created
- s contains the median key H of r and has the two halves of r as children
- Example below for $k=4$

B-Tree-Insert(T,key)

$r=\operatorname{root}[T]$
if $(\#$ keys in $r)=2 k-1 / /$ root r is full
//insert new root node:
$\mathrm{S} \leftarrow$ Allocate-Node()
$\operatorname{root}[T] \leftarrow \mathrm{s}$
// split old root r to be two children of new root s B-Tree-Split-Child $(s, 1, r)$
B-Tree-Insert-Nonfull(s,key)
else B-Tree-Insert-Nonfull(r, key)

B-Tree-Insert-Nonfull (x,key)

if x is a leaf then
insert key at the correct (sorted) position in x
DISK-WRITE(x)
else
find child c of x which by the search tree property
should contain key
DISK-READ(c)
if c is full then $/ / c$ contains $2 k-1$ keys
B-Tree-Split-Child (x, i, c)
$c=$ child of x which should contain key
B-TREE-INSERT-NONFULL(c,key)

Insert example ($k=3$)

- Insert B:

Insert example ($k=3$) -- cont.

- Insert Q :

Insert example ($k=3$) -- cont.

- Insert L :

ABCDE JKL
NO
QRS
$U V$
Y Z

Insert example ($k=3$) -- cont.

- Insert F :

Runtime of B-TREE-InSERT

- $O(k)$ runtime per node
- Path has height $h=O\left(\log _{k} n\right)$
- CPU-time: $O\left(k \log _{k} n\right)$
- Disk accesses: $O\left(\log _{k} n\right)$
disk accesses are more expensive than CPU time

Deletion of an element

- Similar to insertion, but a bit more complicated
- If sibling nodes get not full enough, they are merged into a single node
- Same complexity as insertion

B-trees -- Conclusion

- B-trees are balanced $2 k$-ary search trees
- The degree of each node is bounded from above and below using the parameter k
- All leaves are at the same height
- No rotations are needed: During insertion (or deletion) the balance is maintained by node splitting (or node merging)
- The tree grows (shrinks) in height only by splitting (or merging) the root

