CMPS 2200 Introduction to Algorithms - Fall 14

$11 / 11 / 14$

8. Homework

Due 11/20/14 at the beginning of class

Remember, you are allowed to turn in homeworks in groups of two.

1. Binary Counter (5 points)

Use aggregate analysis to show that, over a sequence of n increment operations on a binary counter, the amortized runtime of one such increment operation is $O(1)$.
(Hint: Study the flipping behavior of every single bit $A[i]$.)
2. Queue from Stacks (5 points)
[See Homework 2 from CMPS 1600 as a reference.]
Assume we are given an implementation of a stack, in which PUSH and Pop operations take constant time each. We now implement a FIFO queue using two stacks A and B as follows:

Enqueue (x) :

- Push x onto stack A

Dequeve ():

- If stack B is nonempty, return $B \cdot \operatorname{Pop}()$
- Else, pop all elements from A and immediately push them onto B. Return B.Pop()

Prove using the accounting method that the amortized runtime of ENQUEUE and DEQUEUE each is $O(1)$. Argue why your account balance is always non-negative.
3. Decision tree (5 points)

Below is the code for Bubble Sort:

```
void bubbleSort(int A[1..n]){
    for(int i=1; i <= n; i++)
        for(int j=n; j >= i+1; j--)
            if(A[j]<A[j-1])
                swap(A[j],A[j-1]);
}
```

Draw the decision tree for Bubble Sort for an array $A[1 . .3]$ of $n=3$ elements. Annotate the decision tree with comments indicating the part of the algorithm that a comparison belongs to.

4. Lower bound for comparison-based searching (5 points)

Consider the problem of searching for a given key in a sorted array of n numbers. Use a decision tree to show a lower bound of $\Omega(\log n)$ for any comparison-based search algorithm. (Hint: The decision tree needs to represent the output of the search algorithm in its leaves. What should be stored in the leaves?)

