4. Homework

Due 10/2/14 at the beginning of class
Remember, you are allowed to turn in homeworks in groups of two. One writeup, with two names.

1. 3-way mergesort (5 points)

```
int 3wayMergesort(int i, int j, int[] A){
    // Sort A[i..j]
    if(j-i<=1)
            return;
    int l = (j-i)/3;
    3wayMergesort(i,i+l, A);
    3wayMergesort(i+l+1,i+2*l,A);
    3wayMergesort(i+2*l+1,j,A);
    merge(i,i+l+1,i+2*l+1); // Merges all three sub-arrays in linear time
}
```

The first call is 3 wayMergesort ($0, \mathrm{n}-1, \mathrm{~A}$) to sort the array $A[0 . . n-1]$.
Set up a runtime recurrence $(T(n)=\ldots)$ for 3-way mergesort above. Then solve the recurrence using the method of your choice. What is the runtime of 3wayMergesort?

2. Master theorem (10 points)

Use the master theorem to solve the following recurrences. Justify your results. Assume that $T(1)=1$.
(a) $T(n)=3 T\left(\frac{n}{3}\right)+3$
(b) $T(n)=64 T\left(\frac{n}{2}\right)+n^{6} \log ^{2} n$
(c) $T(n)=27 T\left(\frac{n}{3}\right)+n \log n$
(d) $T(n)=8 T\left(\frac{n}{2}\right)+n^{4}$
(e) $T(n)=64 T\left(\frac{n}{4}\right)+n^{3}$

3. Strassen's Algorithm (4 points)

Apply Strassen's algorithm to compute

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & 1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right) \cdot\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 \\
1 & 0 & 1 & 3
\end{array}\right)
$$

The recursion should exit with the base case $n=1$, i.e., 2×2 matrices should recursively be computed using Strassen's algorithm. In order to save you some work, you may assume that the following is a partial solution and you only have to fill in the missing values by using Strassen's algorithm:

$$
\left(\begin{array}{llll}
2 & 2 & & \\
5 & 6 & & \\
3 & 2 & 5 & 4 \\
5 & 0 & 3 & 3
\end{array}\right)
$$

4. More Strassen's (4 points)

Suppose you want to develop an algorithm to multiply two $n \times n$ matrices in time faster than Strassen's algorithm. Suppose your algorithm proceeds in dividing the problem up into parts of size $\frac{n}{4} \times \frac{n}{4}$, and that your divide and combine steps together take $\Theta\left(n^{2}\right)$ time. You would like to find out how many subproblems you need in order to be faster than Strassen's algorithm. If you have a subproblems the recurrence is $T(n)=a T\left(\frac{n}{4}\right)+\Theta\left(n^{2}\right)$. Find the largest (integer) value of a for which your algorithm would be asymptotically faster than Strassen's.

