8/29/14

1. Homework

Due 9/11/14 at the beginning of class

Remember, you are allowed to turn in homeworks in groups of two. One writeup, with two names.

1. Big-Oh ranking (10 points)

Rank the following ten functions by order of growth, i.e., find an arrangement $f_1, f_2, ...$ of the functions satisfying $f_1 \in O(f_2), f_2 \in O(f_3),...$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_i, f_j that are adjacent in your ordering, prove shortly why $f_i \in O(f_j)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$3^n$$
 , $\log n$, n^2 , $n^2 \log n$, 2^n , \sqrt{n} , n^3 , $4^{\log_2 n}$, $\log \log n$, n , 3^{n+2} ,

Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

if the limits exist; where f and g' are the derivatives of f and g, respectively.

2. O, Ω, Θ (10 points)

Show using the definitions of big-Oh, Ω , and Θ :

- (a) (4 points) $8n^3 + 4n 5 \in \Theta(n^3)$
- (b) (2 points) $2n^2 + 7 \notin \Omega(n^3)$
- (c) (4 points) Which of the following statements is true? Justify your answers with either a proof or a counter example. If $f(x) \in O(x(x)) = \int f(x(x)) dx dx$
 - If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$ then
 - i. $f_1(n) + f_2(n) \in O(\min(g_1(n), g_2(n))).$
 - ii. $f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n))).$

3. Code snippet (4 points)

Give the Θ -runtime for the code snippet below, depending on n. Justify your answer.

```
for(i=1; i<=n*n; i=i+4)
for(j=n; j>=1; j=j/4)
    print(" ");
```