CMPS/MATH 2170 Discrete Mathematics - Fall 15

10/28/15

7. Homework

Due $11 / 5 / 15$ at the beginning of the lab

1. Climbing a ladder (8 points)

Consider climbing a ladder with n rungs. The rungs are spaced such that you can climb one rung, two rungs, or three rungs at a time. Let $r(n)$ be the number of different ways to climb a ladder with n rungs. For example, $r(2)=2$ because one can climb a 2 -rung ladder either as $1+1$ rungs or as 2 rungs, which are two different climbing patterns.
(a) (3 points) Give the values of $r(1), r(3), r(4)$; justify your answers.
(b) (4 points) Develop a recursive formula for $r(n)$. Explain your answer. (Hint: This will look similar to the Fibonacci numbers, with multiple base cases and more than one recursive "call".
(c) (1 point) What is $r(7)$?

2. Recursive definitions (6 points)

Give a recursive definition of:
(a) (2 points) the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ if $a_{n}=3 n+5$.
(b) (2 points) the set of positive integer powers of 3 .
(c) (2 points) the function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$where $f(n)$ is the sum of positive integers less or equal to n.

3. Solve recurrences (6 points)

Solve the linear recurrences below.
(Hint: Compute the roots of the characteristic equation, and then use the initial conditions to solve for α_{1} and α_{2}.)
(a) (3 points) $a_{n}=8 a_{n-1}-16 a_{n-2}$ for $n \geq 2 ; a_{0}=2, a_{1}=12$
(b) (3 points) $a_{n}=-3 a_{n-1}+4 a_{n-2}$ for $n \geq 2 ; a_{0}=5, a_{1}=10$
4. Quotient and remainder (2 points)

Find the quotient ("div") and the remainder ("mod") when:
(a) (1 point) 23 is divided by 6
(b) (1 point) -42 is divided by 5
5. Congruence (3 points)

Let $a, b, c>0, m \geq 2$ be integers. Prove that

$$
a \equiv b \quad(\bmod m) \quad \text { implies that } \quad a c \equiv b c \quad(\bmod m c) .
$$

6. Euclidean algorithm (3 points)

Use the Euclidean algorithm to find $\operatorname{gcd}(12345,678)$.

