CMPS/MATH 2170 Discrete Mathematics - Fall 15

5. Homework

Due $\mathbf{1 0} / \mathbf{8 / 1 5}$ at the beginning of the lab

1. Composition I ($\mathbf{7}$ points)

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=2 x^{3}+3$ and $g(x)=4 x-1$.
(a) (1 point) Find $f \circ g$ and $g \circ f$.
(b) (4 points) Show that f and g are bijective.
(c) (2 points) Find $f^{-1}, g^{-1},(f \circ g)^{-1}$ and $(g \circ f)^{-1}$.
(d) (1 extra credit point) Generally, $f \circ g \neq g \circ f$. Can you give functions f and g, with $f \neq g$ and both different from the identity function, such that $f \circ g=g \circ f$?
2. Composition II (4 points)

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions. Show that if f and g are bijective then $f \circ g$ is bijective.

3. Cardinality I (6 points)

Determine whether the sets below are finite, countably infinite, or uncountable. Justify your answers.
(a) (2 points) The integers between 0 and 9 .
(b) (2 points) The rational numbers between 0 and 9 .
(c) (2 points) The real numbers between 0 and 9 .

4. Cardinality II (3 points)

Give an example of two uncountable sets A and B such that
(a) (1 point) $A \backslash B$ is finite.
(b) (1 point) $A \backslash B$ is countably infinite.
(c) (1 point) $A \backslash B$ is uncountable.

5. Cardinality III (8 points)

Let A, B be two sets such that $A \subseteq B$. Prove or disprove each of the statements below.
(a) (2 points) If A is uncountable then B is uncountable.
(b) (2 points) If A is countable then B is countable.
(c) (2 points) If B is uncountable then A is uncountable.
(d) (2 points) If B is countable then A is countable.

