9/22/15

4. Homework

Due 10/1/15 at the beginning of the lab

1. $\{2\}$ (4 points)

Determine which of these statements are true or false.

- (a) $\{2\} \subseteq \{2\}$
- (b) $\{2\} \subseteq \{\{2\}\}$
- (c) $\{2\} \in \{\{2\}\}$
- (d) $\{2\} \in \{\{\{2\}\}\}$
- 2. Set Identity (5 points) Prove that $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$.

3. Power Sets (10 points)

- (a) (2 points) Find $\mathcal{P}(A \times B)$ where $A = \{1, 2\}$ and $B = \{3, 4\}$.
- (b) (4 points) Determine if each of these sets is the power set of a set.
 - i. \emptyset ii. $\{\emptyset, 2\}$ iii. $\{\emptyset, \{2\}, \{\emptyset, 2\}\}$ iv. $\{\emptyset, \{2\}, \{3\}, \{2, 3\}\}$
- (c) (4 points) Prove or disprove: If $\mathcal{P}(A) = \mathcal{P}(B)$ then A = B.

4. Onto and One-to-One (3 points)

Give an example of a function from $\mathbb N$ to $\mathbb N$ that is

- (a) one-to-one but not onto
- (b) onto but not one-to-one
- (c) neither one-to-one nor onto.

5. Strictly Increasing (5 points)

A function $f : \mathbb{R} \to \mathbb{R}$ is strictly increasing iff $\forall x_1, x_2 \in \mathbb{R} : x_1 < x_2 \to f(x_1) < f(x_2)$. Show that every strictly increasing function is one-to-one.

6. Functions (8 points)

Let $f(x) = 3x^3$. For each of the domains and co-domains below, determine whether f is a valid function, and if so whether it is injective, surjective, or bijective.

(a)
$$f : \mathbb{R} \to \mathbb{R}$$
 (b) $f : \mathbb{N} \to \mathbb{N}$ (c) $f : \mathbb{N} \to \mathbb{R}$ (d) $f : \mathbb{R} \to \mathbb{N}$