9/2/15

1. Homework

Due 9/9/15 at the beginning of class

1. Propositions (3 points)

Consider the following propositions:

s: It is sunny; r: It rains; c: There are clouds in the sky Write the propositions below using s, r, c and logical operators.

- (a) If it rains then there are clouds in the sky and it is not sunny.
- (b) It is sunny even though there are clouds in the sky.
- (c) It rains only if there are clouds in the sky.

2. Equivalences (6 points)

Consider the following equivalence: $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$

- (a) Show the equivalence using truth tables.
- (b) Show the equivalence by establishing a sequence of equivalences. You may use all equivalences in Table 6 and the first equivalence in Table 7. Show your work by annotating every step.

3. NOR (7 points)

We showed in class that $\{\land, \lor, \neg\}$ is functionally complete, i.e., any Boolean function can be expressed using a combination of \land, \lor, \neg .

- (a) (2 points) Show that $\{\lor, \neg\}$ is functionally complete.
- (b) Consider the NOR operator \downarrow which is defined using the truth table below. $x\mid y\mid x\downarrow y$
 - $0 \ 0 \ 1$
 - 0 | 1 | 0
 - 1 | 0 | 0
 - 1 | 1 | 0
 - i. (1 point) Show $x \downarrow y \equiv \neg(x \lor y)$.
 - ii. (4 points) Find a compound proposition equivalent to $\neg p$ that uses only \downarrow . And find a compound proposition equivalent to $p \lor q$ that uses only \downarrow . Now argue that $\{\downarrow\}$ is functionally complete.

FLIP over to back page \implies

4. Quantifiers (8 points)

Justify your answers shortly.

- (a) (4 points) Let P(x) be the statement x + 1 > 2x, and let the domain be all integers. Determine the truth values of the following expressions.
 - i. P(0) ii. $\forall x : P(x)$ iii. $\exists x : P(x)$ iv. $\forall x : \neg P(x)$
- (b) (1 point) Find a counterexample to: $\forall x : x^2 \ge x$, where the domain is the real numbers.
- (c) (2 points) Give an existential quantification that is true for one domain and false for another domain.

5. Negating Quantifiers (6 points)

- (a) (3 points) Consider the sentence: "All German movies are fun."
 - i. Express the sentence using quantifiers.
 - ii. Negate the quantification, and simplify such that there is no \neg symbol in front of the quantifier.
 - iii. Now express this negated sentence in English.
- (b) (3 points) Perform the same three steps (express using quantifiers, negate, express negated sentence in English) for the sentence: "There exists a pig that can swim and catch fish."