CMPS/MATH 2170 Discrete Mathematics - Fall 14

$10 / 22 / 14$

6. Homework

Due Monday 11/3/14 at the beginning of class

Remember, you are allowed to turn in homeworks in groups of two. One writeup, with two names.

1. Recursive sequence (4 points)

Give a recursive definition of the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ if
(a) (2 point) $a_{n}=1+(-1)^{n}$
(b) (2 point) $a_{n}=n^{2}$

2. Recursive Definition (4 points)

Give a recursive definition of:
(a) (2 points) the set of positive integer powers of 3 .
(b) (2 points) the set of polynomials with integer coefficients. (I.e., for example $4 x^{3}-3 x$ or $-3 x^{5}+7 x^{2}+4$)
3. Fibonacci induction (5 points)

Let f_{n} be the n-th Fibonacci number. Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Use a form of induction (which one are you using?) to prove that

$$
A^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right)
$$

for all $n \in \mathbb{Z}^{+}$.
4. Mod (4 points)
(a) (2 points) Evaluate these quantities:
(i) $-17 \bmod 2$, (ii) $144 \bmod 7$, (iii) $-101 \bmod 13$, (iv) $199 \bmod 19$.
(b) (2 points) List two negative integers and two positive integers that are contruent to 4 modulo 12 .

5. Division (6 points)

(a) (2 points) Prove or disprove that if $a \mid b c$, where a, b, c are positive integers, then $a \mid b$ or $a \mid c$.
(b) (4 points) Prove that if n is an odd positive integer, then $n^{2} \equiv 1(\bmod 8)$.

