9/24/14

4. Homework

Due 10/3/14 at the beginning of class

Remember, you are allowed to turn in homeworks in groups of two. One writeup, with two names.

- 1. Injective, Surjective, Bijective (6 points)
 - (a) $f : \mathbb{R} \to \mathbb{R}; f(x) = -2x + 5$
 - (b) $f : \mathbb{R} \to \mathbb{R}; f(x) = -2x^2 + 6$
 - (c) $f : \mathbb{R} \to \mathbb{R}; f(x) = (x+1)/(x+2)$

For each of the above functions, perform the following three tasks:

- (i) Determine whether it is a valid function. If not, change the domain to make it a valid function.
- (ii) Determine whether it is injective, surjective, or bijective.
- (iii) If the function is not surjective, please specify how to alter the codomain to make it surjective.

2. One-to-one and Onto (2 points)

Give an example of a function from \mathbb{N} to \mathbb{N} that is:

- (a) onto but not one-to-one.
- (b) neither onto nor one-to-one.

Justify your answer.

3. Composition (5 points)

- (a) Find $f \circ g$ and $g \circ f$ where $f(x) = x^2 + 2$ and g(x) = x + 1 are functions from \mathbb{R} to \mathbb{R} .
- (b) Let f(x) = ax + b and g(x) = cx + d, where a, b, c, d are constants. Determine for which constants a, b, c, d it is true that $f \circ g = g \circ f$.

4. Composition of Functions (6 points)

Prove that the composition of two injective functions is injective. Proceed in the following steps:

- Formalize the theorem statement in a logical formula that uses three functions f, g, h.
- Draw a picture that illustrates the claim.
- Now apply the definition of an injective function to prove the claim.

FLIP over to back page \implies

5. Sequences (2 points)

Find two different sequences beginning with the terms 3, 5, 7 whose terms are generated by a simple formula or by an (informally described) rule.

6. Summations (3 points)

Find explicit formulas for the following summations:

- (a) $\sum_{i=1}^{10} (2i+1)$ (b) $\sum_{i=1}^{n} (2i+1)$ (c) $\sum_{i=4}^{n} 2^{i-4}$