CMPS/MATH 2170 Discrete Mathematics – Fall 14

9/17/14

3. Homework

Due 9/26/14 at the beginning of class

Remember, you are allowed to turn in homeworks in groups of two. One writeup, with two names.

1. Equivalence (3 points)

Prove that the following are equivalent for all $a, b \in \mathbb{R}$:

(i) a is less than b, (ii) the average of a and b is greater than a, (iii) the average of a and b is less than b

2. Irrational (4 points)

- (a) Prove or disprove: If x and y are rational, then x^y is rational.
- (b) Prove that $\sqrt{2} 1$ is irrational. What proof strategy did you use?

3. Indirect Proofs (6 points)

Consider the following statement: Let n be an integer. If $n^2 - 3n - 5$ is even, then n is odd.

- (a) Prove the statement using an indirect proof (by contrapositive).
- (b) Prove the statement using a proof by contradiction.
- (c) Likely both your proofs are very similar and shared some of the same arguments. Can you formally state why a proof by contradiction and an indirect proof by contrapositive can be similar at times?

4. Sets (11 points)

- (a) (3 points) Which of these statements are true? Justify your answers.
 - i. $\emptyset \in \{\emptyset\}$
 - ii. $\{\emptyset\} \in \{\emptyset\}$
 - iii. $\{\emptyset\} \subseteq \{\emptyset, \{\emptyset\}\}$
- (b) (2 points) Let $A_i = \{i, i+1, i+2, \ldots\}$.
 - i. Give a concise description for $\bigcup_{i=1}^{\infty} A_i$.
 - ii. Give a concise description for $\bigcap_{i=1}^{\infty} A_i$.
- (c) (2 points) Show that if A is a subset of B, then the power set of A is a subset of the power set of B.
- (d) (1 point) Show that if A and B are sets, then $(A \cup B) \subseteq (A \cup B \cup C)$.
- (e) (3 points) Show that if A and B are sets, then $(A \cap B) \cup (A \cap \overline{B}) = A$.