

Triangulations
Carola Wenk

Triangulations

- Decompose the polygon into shapes that are easier to handle: triangles
- A triangulation of a polygon P is a decomposition of P into triangles whose vertices are vertices of P. In other words, a triangulation is a maximal set of non-crossing diagonals.

Triangulations

- A polygon can be triangulated in many different ways.

Triangulations of Simple Polygons

Theorem 1: Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly $n-2$ triangles.
Proof: By induction.

- $n=3$:

- $n>3$: Let u be leftmost vertex, and v and w adjacent to v. If $v w$ does not intersect boundary of P : \#triangles $=1$ for new triangle $+(n-1)-2$ for remaining polygon $=n-2$

Triangulations of Simple Polygons

Theorem 1: Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly $n-2$ triangles.

If $\stackrel{v W}{ }$ intersects boundary of P : Let $u^{\prime} \neq u$ be the the vertex furthest to the left of ' $\overline{v W}$. Take $\overline{u n \prime}$ ' as diagonal, which splits P into P_{1} and P_{2}. \#triangles in $P=$ \#triangles in $P_{1}+$ \#triangles in $P_{2}=\left|P_{1}\right|-2+\left|P_{2}\right|-2=$ $\left|P_{1}\right|+\left|P_{2}\right|-4=n+2-4=n-2$

Triangulate an l-Monotone Polygon

- Using a greedy plane sweep in direction l
- Sort vertices by increasing x-coordinate (merging the upper and lower chains in $\mathrm{O}(n)$ time)
- Greedy: Triangulate everything you can to the left of the sweep line.

