

Triangulations

- Decompose the polygon into shapes that are easier to handle: triangles
- A **triangulation** of a polygon *P* is a decomposition of *P* into triangles whose vertices are vertices of *P*. In other words, a triangulation is a maximal set of non-crossing diagonals.

Triangulations

• A polygon can be triangulated in many different ways.

Triangulations of Simple Polygons

Theorem 1: Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly n-2 triangles.

Proof: By induction.

- *n*=3:
- n>3: Let u be leftmost vertex, and v and w adjacent to v. If vw does not intersect boundary of P: #triangles = 1 for new triangle + (n-1)-2 for remaining polygon = n-2

Triangulations of Simple Polygons

Theorem 1: Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly n-2 triangles.

If $\forall w$ intersects boundary of *P*: Let $u' \neq u$ be the the vertex furthest to the left of $\forall w$. Take uu' as diagonal, which splits *P* into *P*₁ and *P*₂. #triangles in *P* = #triangles in *P*₁ + #triangles in *P*₂ = $|P_1| - 2 + |P_2| - 2 =$ $|P_1| + |P_2| - 4 = n + 2 - 4 = n - 2$

Triangulate an *l*-Monotone Polygon

- Using a greedy plane sweep in direction *l*
- Sort vertices by increasing *x*-coordinate (merging the upper and lower chains in O(*n*) time)
- Greedy: Triangulate everything you can to the left of the sweep line.

