Triangulations

Carola Wenk
Triangulations

- Decompose the polygon into shapes that are easier to handle: triangles
- A **triangulation** of a polygon P is a decomposition of P into triangles whose vertices are vertices of P. In other words, a triangulation is a maximal set of non-crossing diagonals.
Triangulations

- A polygon can be triangulated in many different ways.
Triangulations of Simple Polygons

Theorem 1: Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly $n-2$ triangles.

Proof: By induction.

- $n=3$: △
- $n>3$: Let u be leftmost vertex, and v and w adjacent to v. If vw does not intersect boundary of P: \#triangles $= 1$ for new triangle + $(n-1)-2$ for remaining polygon $= n-2$
Triangulations of Simple Polygons

Theorem 1: Every simple polygon admits a triangulation, and any triangulation of a simple polygon with \(n \) vertices consists of exactly \(n-2 \) triangles.

If \(vw \) intersects boundary of \(P \): Let \(u' \neq u \) be the vertex furthest to the left of \(vw \). Take \(uu' \) as diagonal, which splits \(P \) into \(P_1 \) and \(P_2 \).

\[
\text{#triangles in } P = \text{#triangles in } P_1 + \text{#triangles in } P_2 = |P_1|-2 + |P_2|-2 = |P_1|+|P_2|-4 = n+2-4 = n-2
\]
Triangulate an l-Monotone Polygon

- Using a greedy plane sweep in direction l
- Sort vertices by increasing x-coordinate (merging the upper and lower chains in $O(n)$ time)
- Greedy: Triangulate everything you can to the left of the sweep line.