CMPS/MATH 2170 - Fall 2013

Graphs
Carola Wenk

Graphs (review)

Definition. A directed graph (digraph) $G=(V, E)$ is an ordered pair consisting of

- a set V of vertices (singular: vertex),
- a set $E \subseteq V \times V$ of edges.

In an undirected graph $G=(V, E)$, the edge set E consists of unordered pairs of vertices.
In either case, we have $|E|=O\left(|V|^{2}\right)$.
Moreover, if G is connected, then $|E| \geq|V|-1$.

Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E}, \\ 0 & \text { if }(i, j) \notin \mathrm{E} .\end{cases}
$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

$\Theta\left(|V|^{2}\right)$ storage \Rightarrow dense representation.

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

$$
\begin{aligned}
& \operatorname{Adj}[1]=\{2,3\} \\
& \operatorname{Adj}[2]=\{3\} \\
& \operatorname{Adj}[3]=\{ \} \\
& \operatorname{Adj}[4]=\{3\}
\end{aligned}
$$

For undirected graphs, $|\operatorname{Adj}[v]|=\operatorname{degree}(v)$.
For digraphs, $|\operatorname{Adj}[v]|=$ out-degree(v).

Adjacency-list representation

Handshaking Lemma:

Every edge is counted twice

- For undirected graphs:

$$
\sum_{v \in V} \text { degree }(v)=2|\mathrm{E}|
$$

- For digraphs:

$$
\sum_{v \in V} \text { in-degree }(v)+\sum_{v \in V} \text { out-degree(v) }=2|\mathrm{E}|
$$

\Rightarrow adjacency lists use $\Theta(|V|+|E|)$ storage
\Rightarrow a sparse representation

Paths, Cycles, Connectivity

Let $G=(V, E)$ be a directed (or undirected) graph

- A path from v_{1} to v_{k} in G is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{\mathrm{k}}$ such that $\left(v_{\mathrm{i}}, v_{\{i+1\}}\right) \in E$ (or $\left\{v_{\mathrm{i}}, v_{\{i+1\}}\right\} \in E$ if G is undirected) for all $i \in\{1, \ldots, k-1\}$.
- A path is simple if all vertices in the path are distinct.
- A path $v_{1}, v_{2}, \ldots, v_{\mathrm{k}}$ forms a cycle if $v_{1}=v_{\mathrm{k}}$.
- A graph with no cycles is acyclic.
- An undirected acyclic connected graph is called a tree. (Trees do not have to have a root vertex specified.)
- A directed acyclic graph is a DAG. (A DAG can have undirected cycles if the direction of the edges is not considered.)
- An undirected graph is connected if every pair of vertices is connected by a path. A directed graph is strongly connected if for every pair $u, v \in V$ there is a path from u to v and there is a path from v to u.
- The (strongly) connected components of a graph are the equivalence classes of vertices under this reachability relation.

