CMPS/MATH 2170 – Fall 2013

Graphs Carola Wenk

Graphs (review)

Definition. A *directed graph* (*digraph*) G = (V, E) is an ordered pair consisting of

- a set *V* of *vertices* (singular: *vertex*),
- a set $E \subseteq V \times V$ of *edges*.

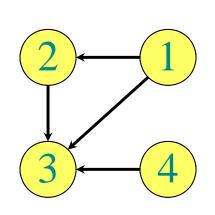
In an *undirected graph* G = (V, E), the edge set *E* consists of *unordered* pairs of vertices. In either case, we have $|E| = O(|V|^2)$.

Moreover, if *G* is connected, then $|E| \ge |V| - 1$.

Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

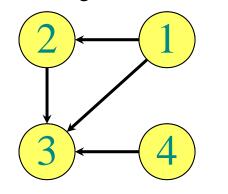
$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$



A	1	2	3	4	
1	0	1	1	0	$\Theta(V/^2)$ storage
2	0	0	1	0	\Rightarrow dense
3	0	0	0	0	representation.
4	0 0 0	0	1	0	

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.



$$Adj[1] = \{2, 3\}$$

 $Adj[2] = \{3\}$
 $Adj[3] = \{\}$
 $Adj[4] = \{3\}$

For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).

Adjacency-list representation

Handshaking Lemma:

Every edge is counted twice

- For undirected graphs: $\sum_{v \in V} degree(v) = 2|E|$
- For digraphs:

 $\sum_{v \in V} in-degree(v) + \sum_{v \in V} out-degree(v) = 2 \mid E \mid$

- \Rightarrow adjacency lists use $\Theta(|V| + |E|)$ storage
- \Rightarrow a *sparse* representation

Paths, Cycles, Connectivity

Let G=(V,E) be a directed (or undirected) graph

- A path from v_1 to v_k in *G* is a sequence of vertices $v_1, v_2, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ (or $\{v_i, v_{i+1}\} \in E$ if *G* is undirected) for all $i \in \{1, ..., k-1\}$.
- A path is **simple** if all vertices in the path are distinct.
- A path v_1, v_2, \dots, v_k forms a **cycle** if $v_1 = v_k$.
- A graph with no cycles is **acyclic**.
 - An undirected acyclic connected graph is called a **tree**. (Trees do not have to have a root vertex specified.)

• A directed acyclic graph is a **DAG**. (A DAG can have undirected cycles if the direction of the edges is not considered.)

- An undirected graph is connected if every pair of vertices is connected by a path. A directed graph is strongly connected if for every pair *u*,*v*∈*V* there is a path from *u* to *v* and there is a path from *v* to *u*.
- The (strongly) connected components of a graph are the equivalence classes of vertices under this reachability relation.