Extra Credit Homework

Due Friday 12/6/13 at the beginning of class

1. Relations (11 points)

(a) (2 points) Determine whether the following relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where $(a, b) \in R$ iff a and b were born on the same day.
(b) (1 point) Give an example of a relation on a set that is reflexive and not symmetric. Justify your answer.
(c) (4 points) Let R be a relation on a set. The inverse relation R^{-1} is defined as $R^{-1}=\{(b, a) \mid(a, b) \in R\}$. Show that R is antisymmetric if and only if $R \cap R^{-1}$ is a subset of the diagonal relation $\Delta=\{(a, a) \mid a \in A\}$.
(d) (4 points) Let R be the relation on the set of all sets of real numbers such that $(S, T) \in R$ if and only if S and T have the same cardinality. Show that R is an equivalence relation. What are the equivalence classes of the sets $\{0,1,2\}$ and \mathbb{Z} ?

2. Graphs (4 points)

(a) (2 points) Let $G=(V, E)$ be a (simple and undirected) graph. Let B be the maximum degree of all vertices, and let A be the minimum degree of all vertices. Show that $A \leq 2|E| /|V| \leq B$.
(b) (2 points) Describe the adjacency matrix of a graph with k connected components when the vertices of the graph are listed so that vertices in each connected component are listed successively.

3. Trees (6 points)

(a) (4 points) Let G be a simple graph. Show that G is a tree if and only if (i) G is connected and (ii) the deletion of any of its edges produces a graph that is not connected.
(Hint: Show G is a tree implies (i) and (ii). Then show (i) and (ii) imply that G is a tree.)
(b) (2 points) Show that a connected graph with n vertices has to have at least $n-1$ edges.

