CMPS/MATH 2170 Discrete Mathematics - Fall 13

10/21/13

7. Homework

Due 10/30/13 at the beginning of class

1. GCD (8 points)

(a) (2 point) Find $\operatorname{gcd}(1000,625)$ and $\operatorname{lcm}(1000,625)$ and verify that $\operatorname{gcd}(1000,625) \cdot \operatorname{lcm}(1000,625)=1000 \cdot 625$.
(b) (2 points) Use the Euclidean algorithm to find $\operatorname{gcd}(277,123)$.
(c) (4 points) Prove $a \equiv b(\bmod m)$ if and only if $a \bmod m=b \bmod m$, for all $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}$.

2. Euler's Φ (5 points)

Euler's Φ-function is defined as follows for any $n \in \mathbb{N}$: $\Phi(n)$ is the number of positive integers less than or equal to n that are relatively prime to n.
(a) (1 point) Find $\Phi(6)$ and $\Phi(7)$
(b) (4 points) Prove that n is prime if and only if $\Phi(n)=n-1$.

3. Inverse (6 points)

(a) (1 point) Find an inverse of 2 modulo 17.
(b) Theorem: Show that an inverse of a modulo m does not exist if $\operatorname{gcd}(a, m)>1$.
i. (2 points) For $m=10$ and $a=6$, what is $g c d(a, m)$? Argue why an inverse of $a=6$ does not exist.
ii. (3 points) Prove the theorem statement.

4. Perfect Number (5 points)

A positive integer is called perfect if it equals the sum of its positive divisors other than itself.
(a) (2 point) Show that 6 and 28 are perfect.
(b) (3 points) Show that $2^{p-1}\left(2^{p}-1\right)$ is a perfect number, when $2^{p}-1$ is prime. (Hint: Use the formula for the geometric series.)

