CMPS/MATH 2170 Discrete Mathematics - Fall 13

6. Homework

Due $\mathbf{1 0} / \mathbf{2 3} / \mathbf{1 3}$ at the beginning of class

1. Recursive sequence (4 points)

Give a recursive definition of the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ if
(a) (2 point) $a_{n}=4 n-2$
(b) (2 point) $a_{n}=n(n+1)$

2. Recursive Definition (4 points)

Give a recursive definition of:
(a) (2 point) the set of odd positive integers.
(b) (2 point) the set of positive integers that are multiples of 3 .

3. Fibonacci (6 points)

Let F_{n} be the n-th Fibonacci number ($F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ for all $n \geq 2$). Let s and t be constants. And let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be defined as $a_{0}=s, a_{1}=t$, and $a_{n}=a_{n-1}+a_{n-2}$ for all $n \geq 2$. Use induction to show that for all $n \in \mathbb{N}$:

$$
a_{n}=s F_{n-1}+t F_{n}
$$

(Hint: $\mathbb{N}=\{1,2,3, \ldots\}$. And make sure that you have two base cases, since the recursive definition for a_{n} refers to two previous values.)

4. Expansion and induction (4 points)

Consider the recursively defined function $T(0)=a$ and $T(n)=T(n-1)+b$ for all $n \geq 1$.
(a) (1 point) Apply the expansion method to arrive at a guess what $T(n)$ might solve to. Show your work.
(b) (3 points) Prove by induction that $T(n)=n b+a$ for all $n \in \mathbb{N}_{0}$.

5. Climbing a ladder (5 points)

Consider climbing a ladder with n rungs. The rungs are spaced such that you can climb one rung, two rungs, or three rungs at a time. Let $r(n)$ be the number of different ways to climb a ladder with n rungs. For example, $r(2)=2$ because one can climb a 2 -rung ladder either as $1+1$ rungs or as 2 rungs, which are two different climbing patterns.
(a) (1 point) Give the values of $r(1), r(3), r(4)$; justify your answers.
(b) (3 point) Develop a recursive formula for $r(n)$. Explain your answer. (Hint: This will look similar to the Fibonacci numbers, with multiple base cases and more than one recursive "call".
(c) (1 point) What is $r(7)$?

