9/30/13

5. Homework

Due 10/16/13 at the beginning of class

1. Weak induction in steps (6 points)

Let P(n) be the following statement:

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

The following sub-problems guide you through a proof by weak induction that P(n) holds for all $n \in \mathbb{N}$.

- (a) (1 point) What is the statement P(1)? Show that P(1) is true, which completes the base case.
- (b) (1 point) What is the inductive hypothesis?
- (c) (1 point) What do you need to prove in the inductive step?
- (d) (3 points) Complete the inductive step.

2. More weak induction (15 points)

Use weak induction on n to prove the following claims.

- (a) (5 points) $n! < n^n$ for all integers n > 1.
- (b) (5 points) Let $n \in \mathbb{N}$ and let p_1, p_2, \ldots, p_n be propositions. Prove that $\neg (p_1 \lor p_2 \lor \ldots \lor p_n)$ is equivalent to $\neg p_1 \land \neg p_2 \land \ldots \land \neg p_n$.
- (c) (5 points) Let $n \in \mathbb{N}$ and let A_1, A_2, \ldots, A_n and B. Prove that $(A_1 \cap A_2 \cap \ldots \cap A_n) \cup B = (A_1 \cup B) \cap (A_2 \cup B) \cap \ldots \cap (A_n \cup B)$.

3. Strong induction (5 points)

Prove the following claim using strong induction:

Every positive integer n can be written as the sum of distinct powers of two.

Hint: (For example, $11 = 8 + 2 + 1 = 2^3 + 2^1 + 2^0$. In your proof, distinguish whether k + 1 is even or odd. Note that when k + 1 is even, then k + 1 = 2m.)