CMPS/MATH 2170 Discrete Mathematics - Fall 13

9/23/13

4. Homework

Due 10/2/13 at the beginning of class

1. Functions (8 points)

Justify all your answers.
(a) (1 point) Give the mathematical notation (including domain and co-domain) of the function that assigns to each pair of positive integers the first integer of the pair.
(b) (1 point) Let $f(x)=a x+b$ and $g(x)=c x+d$. Determine for which constants a, b, c, d it is true that $f \circ g=g \circ f$.
(c) (2 points) Determine whether $f(x)=-3 x^{2}+7$ is a bijection from \mathbb{R} to \mathbb{R}. If it is not a bijection, can you specify a different domain or co-domain for which f is bijective?
(d) (2 points) Determine whether $f(x)=4 x^{3}$ is a bijection from \mathbb{R} to \mathbb{R}. If it is not a bijection, can you specify a different domain or co-domain for which f is bijective?
(e) (2 points) Let $f: B \rightarrow C$ be bijective and let $g: A \rightarrow B$ be surjective. Prove that $f \circ g$ is surjective. Does this still hold if f is only surjective?

2. Functions II (3 points)

Give an example of a function from \mathbb{N} to \mathbb{N} that is:
(a) one-to-one but not onto
(b) onto but not one-to-one
(c) neither one-to-one nor onto

Justify your answers.

3. Sequences (3 points)

For each of the sequences below, find a formula that generates the sequence.
(a) $7,11,15,19,23,27,31, \ldots$
(b) $5,15,45,135,405, \ldots$
(c) $3,6,11,18,27,38,51, \ldots$
4. Summation (2 points)

Find an explicit formula for the summation below. Use index substitution. Simply the formula as much as possible.

$$
\sum_{i=3}^{n}\left(\frac{1}{2}\right)^{i-3}
$$

5. Cardinality (5 points)

Determine whether the sets below are finite, countably infinite, or uncountable.
(a) (1 point) The negative integers.
(b) (2 points) The real numbers between 0 and $1 / 2$, inclusive.
(c) (2 points) The real numbers with decimal representations consisting of all 1 s .
6. More Cardinality (2 points)

Let A be a countable set. Show that the set B is also countable if there is a surjective function from A to B.

