
Parsing and Compilers
Spring 2014

Carola Wenk

Languages So Far

sum = 0
i = 1
while (i <= n):

sum += i
i += 2

Python
Python

Interpreter

Java/C++ Compiler

We’ve seen four languages, how do we actually turn a program
into machine instructions?

lw $t0, 1
lw $t1,0
lw $t2, n

loop:
beq $t0,$t2,done
add $t0, $t1, $t1
add $t0, 2
jmp loop

done:

Scheme
Interpreter

int sum = 0
for (int i = 1; i <= n; i +=2) {

sum += i
}

Java/C++ Scheme
(define (sum n)

(if (= n 0) 0
(+ n (sum n-

1))))

Language Structure

Every language has a grammar: the rules by which it is
spoken and written.

When we hear or see a statement in English, we
1. break it into tokens and
2. parse the tokens into a structure that gives us the meaning.

Language Grammar

• Any programming language needs to have a “grammar”, so
that we can logically transform a program into its
corresponding machine instructions.

• What does such a grammar look like?
Languages grammars are usually specified in Backus-Naur
Normal Form (BNF).

• How do we check whether a program is grammatically
correct?

• It’s a lot like English: we take a program and see if the
grammar could have possibly generated it.
Python Java C SchemeC++

Backus-Naur Form
<postal-address> ::= <name-part> <street-address> <zip-part>

<name-part> ::= <personal-part> <last-name> <opt-suffix-part> <EOL>
| <personal-part> <name-part>

<personal-part> ::= <first-name> | <initial> "."

<street-address> ::= <house-num> <street-name> <opt-apt-num> <EOL>

<zip-part> ::= <town-name> "," <state-code> <ZIP-code> <EOL>

<opt-suffix-part> ::= "Sr." | "Jr." | <roman-numeral> | ""

<opt-apt-num> ::= <apt-num> | ""

[Wikipedia]

Backus-Naur Form is a set of rewrite rules that allows the compact
specification of language rules.

To check if a particular sequence of characters matches a grammar,
we need to establish whether that sequence could have been
generated by the rules of the grammar.

Parser Generators
So for each grammar, we need a
parsing algorithm that can check
whether any program is grammatically
correct.

We won’t get into this, but there are
efficient algorithms for parsing.

Parsing algorithms actually don’t care
about the language, so most commonly
“parser generators” take a grammar
and output a parser (say in C).

It also turns out that we can use the
parse to tell us how to generate
machine instructions.

Generating Machine Instructions

while (x <= 3):
f(x)
x += 1

While checking the grammar, we can produce a parse tree, just as
in English.

The general approach to translation is traverse the parse tree,
using instruction templates for each node in the parse tree.

Python
Parse Tree

Machine Instructions
loop:
<code for test>

jump_if_false done:
<loop body>

jump loop
done:

code for “x <= 3”

code for “f(x)”

[Minka, Microsoft Research]
code for “x += 1”

Different Languages

Python

Java

C/C++

Scheme

Intel 64-bit
Architecture Turing Machine

Any program written in a high-level language can be converted into
machine instructions that are executed in a von Neumann
architecture.

Every von Neumann machine implements a Turing machine.

Memory Operations, Finite
states, Conditional transitions

Parser
Compiler

or, Interpreter

Language Structure

Every language has a grammar: the rules by which it is
spoken and written.

When we hear or see a statement in English, we
1. break it into tokens and
2. parse the tokens into a structure that gives us the meaning.

Lex
Yacc

