
Languages and Data
Types II

Spring 2014
Carola Wenk

Python Types
• Unlike most languages, we do not need to “declare" variables

up front.

Program

Data

Python allows types of variables to be unspecified and allocates
storage as necessary.

x = 25
x = [1,2,3]
x = “cmps1600”

x 25

x = 25

Interpreter

Python Types

Program

Data

x = 25
x = [1,2,3]
x = “cmps1600”

x 25

x = [1,2,3]
[1,2,3]

Unlike most languages, we do not need to “declare" variables up
front.

Python allows types of variables to be unspecified and allocates
storage as necessary.

Interpreter

Python Types

Program

Data

x = 25
x = [1,2,3]
x = “cmps1600”

x 25

x = “cmps1600”
[1,2,3]

“cmps1600”

Unlike most languages, we do not need to “declare" variables up
front.

Python allows types of variables to be unspecified and allocates
storage as necessary.

Interpreter

Python Types
def f(arg1, arg2):
if (arg1 + arg2 < 10):

result = “small”
elif (arg1 + arg2 < 15):

result = “medium”
else:

result = 1000
return result;

print f(10, 1)
print f(15, 25)
print f(f(9,6), f(1, 1))

What does this program do?

Causes a “runtime” error

The interpreter decides whether operations “make sense” and types
are sometimes “inferred” automatically; it is also a safety net since
errors can be detected prior to machine code generation.

Language Platforms
Interpreted languages operate in an environment that provides
some language features “under the hood”.

Interpreter

Program

Statements

Machine
Instructions

Operating
System

To CPU

Parse statements
Resolve ambiguities
Report errors
Manage memory

Language Platforms
Compiled languages operate in a self-contained environment,
and generally do not have a “safety net.”

Compiler

Program

Statements

Operating
System

To CPU

Parse statements
Resolve ambiguities
Report static errors
Manage memory

“Machine”
Code

Variables and Types
• Python doesn’t care about types, because the work of

checking that program statements make sense is left to the
interpreter.

• In other languages (Java, C/C++), these checks are not
performed to improve performance.

• Thus strongly typed languages must have a way to declare
the types/size of data variables can hold.

x = 0;
x = 1.0;
x = [1, 2, 3];
x = “abcdefgh”;
x = [‘a’,‘b’,‘c’,’d’]

Python
int i = 0;
double f = 1.0;
int L[] = {1, 2, 3};
String s = “abcdefgh”;
char M[] = {‘a’,’b’,’c’,’d’}

Java

Variables and Types
• Although Python doesn’t care about types, they exist:

numbers, strings, and lists.

• Java has the same types: int/short/long,
float/double, boolean, char.

• A variable name is simply a placeholder for a memory
address.

0
1
2
3
4
5
6
7
...

Memory

8 Bits

x:

i:

done:
def f():

x = 0
i = 0
done = False
#snapshot
while (!done):

x = x + i
done = (i > 2)
i = i + 1
snapshot

return x

Variables and Types

def f():
x = 0
i = 0
done = False
#snapshot
while (!done):

x = x + i
done = (i > 2)
i = i + 1
snapshot

return x

0
1
2
3
4
5
6
7
...

Memory

8 Bits

x:

i:

done:
0
1
2
3
4
5
6
7
...

Memory

8 Bits

x:

i:

done:0
1
2
3
4
5
6
7
...

Memory

8 Bits

x:

i:

done:

0
1
2
3
4
5
6
7
...

Memory

8 Bits

x:

i:

done:

0
False

0

0
False

1

1
False

2

3
False

3

0
1
2
3
4
5
6
7
...

Memory

8 Bits

x:

i:

done:
6

True

4

Conditionals
if <condition>:

<block of statements>
elif <condition>:

<block of statements>
else:

<block of statements>

Python

if (<condition>) {
<block of statements>
}
else if (<condition>){
<block of statements>
}
else {
<block of statements>
}

Java/C/C++

For conditional statements,
the only real difference in
syntax between Python and
Java/C/C++ has to do with
scope declaration.

Java/C/C++ use braces to
delimit blocks of
statements, instead of
indentation.

Also, in Java/C/C++ the
condition has to be
enclosed in parentheses.

Looping
for i in <list>:

<block of statements>

while (<condition>):
<block of statements>

Python

for (<init>; <condition>; <increment>) {
<block of statements>
}

while (<condition>) {
<block of statments>
}

do {
<block of statements>
} while (<condition>);

Java/C/C++

Again, looping constructs
are fairly similar, except for
how scope is defined.

Java/C/C++ also have a
“do-while” construct that
can be convenient at times.

Functions

public int increment(int i) {
return i+1;

}

public void printHello() {
System.out.println(“Hello”);

}

}

We must also declare the types of not only variables, but also of
functions (called methods in Java).

Methods

Everything is a Class…

A key difference between Python and Java is that, while Python allows
“optional” class declarations, in Java everything is a class.

That is, we cannot just execute a series of statements as in Python.
Instead, all program execution occurs through the invocation of a class
“instance”.

public class Hello {

public static void main(String[] args){
System.out.println(“Hello World”);

}
}

Program Structure
import A, B, C

def f(x1, x2, ...):
...

def g(y1, y2, ...):
...

print “hello world!”

def h(z1, z2, ...):
...

print “goodbye world!”

import A, B, C;

class HelloWorld {
public void f(int x1, char x2, ...) {
...
}

public long g(boolean y1, float y2, ...) {
...
}

private int h(double z1, int z2, ...) {
...
}

public static void main(String[] args) {
System.out.println(“hello world!”)
System.out.println(“goodbye world!”)

}
}

In Java, “everything is a class” so programs are initiated in the
main method of a class, and class files are “executed.”

Java Runtime System
import --;

class HelloWorld {
public void f(int x1, char x2, ...) {
...
}

public long g(boolean y1, float y2, ...) {
...
}

private int h(double z1, int z2, ...) {
...
}

public static void main(String [] args) {
System.out.println(“hello world!”)
System.out.println(“goodbye world!”)

}
}

Java Compiler

Java “Byte”
Code

Operating System

To CPU
Java Virtual

Machine

