
Languages and Data
Types
Spring 2014

Carola Wenk

Big Picture

Hardware
Von Neumann architecture, logic,
gates, circuits, binary numbers,
machine instructions

Software Python: variables, loops, if-then,
functions, lists, recursion

Algorithms
Worst-case analysis of running time,
simple linear-time algorithms, and
efficient searching and sorting.

Tool Development

Problem &
Specification Algorithm Correctness &

Running Time Implementation Test & Verify
Performance

The basic steps of designing and implementing an algorithm:

Computational tools are everywhere because algorithms are
defined abstractly.

Once we formulate a problem in a particular application area, we
try to use our “toolbox” of algorithms to efficiently manage and
process information.

Where do programs “live”?

Memory

Hard Drive

CPU

lw $t0, 1
lw $t1,0
lw $t2, n
loop:
bgt $t0,$t2,done
add $t0, $t1, $t1
add $t0, 2
jmp loop
done:

Where do programs “live”?

Memory

Hard Drive

CPU
lw $t0, 1
lw $t1,0
lw $t2, n
loop:
bgt $t0,$t2,done
add $t0, $t1, $t1
add $t0, 2
jmp loop
done:

How is the program executed once it is stored on the disk drive?

Where do programs “live”?

Memory

Hard Drive

CPU

How is the program executed once it is stored on the disk drive?

Where do programs “live”?

Memory

Hard Drive

CPU

On modern computers, a program called the operating system is in
charge of running one or more programs on the CPU.

Each software program being executed is given appropriate access
to system resources (e.g., memory, disk, I/O).

Operating
System

Creating Machine Instructions

Compiler /
Interpreter

Compilers are CPU-specific programs that translate from high-level
language to machine code.

lw $t0, 1
lw $t1,0
lw $t2, n
loop:
bgt $t0,$t2,done
add $t0, $t1, $t1
add $t0, 2
jmp loop
done:

sum = 0
i = 1
while (i <= n):
sum += i
i += 2

Does the Language Matter?

sum = 0
i = 1
while (i <= n):
sum += i
i += 2

Python

int sum = 0
for (int i = 1; i <= n; i +=2) {
sum += i
}

Java/C++

lw $t0, 1
lw $t1,0
lw $t2, n
loop:
beq $t0,$t2,done
add $t0, $t1, $t1
add $t0, 2
jmp loop
done:

Python
Interpreter

Scheme
(define (sum n)
(if (= n 0) 0

(+ n (sum n-1))))

Does the Language Matter?

sum = 0
i = 1
while (i <= n):
sum += i
i += 2

Python
Python

Interpreter

Java/C++ Compiler

Does every machine program have a corresponding high-level
version (in every language)?

lw $t0, 1
lw $t1,0
lw $t2, n
loop:
beq $t0,$t2,done
add $t0, $t1, $t1
add $t0, 2
jmp loop
done:

Scheme
Interpreter

int sum = 0
for (int i = 1; i <= n; i +=2) {
sum += i
}

Java/C++ Scheme
(define (sum n)
(if (= n 0) 0

(+ n (sum n-1))))

Does the Language Matter?

sum = 0
i = 1
while (i <= n):
sum += i
i += 2

Python

Does every machine program have a corresponding high-level
version (in every language)?

Python
Interpreter

?

?

lw $t0, 1
lw $t1,0
lw $t2, n
loop:
beq $t0,$t2,done
add $t0, $t1, $t1
add $t0, 2
jmp loop
done:

Scheme
Interpreter?

int sum = 0
for (int i = 1; i <= n; i +=2) {
sum += i
}

Java/C++ Scheme
(define (sum n)
(if (= n 0) 0

(+ n (sum n-1))))

Java/C++ Compiler

Different Languages

Python

Java

C/C++

Scheme

Intel 64-bit
Architecture

Any program written in a high-level language can be converted into
machine instructions that are executed on a von Neumann
architecture.

 But is a “machine language” more or less powerful than a high-
level programming language?

Different Languages

Python

Java

C/C++

Scheme

Intel 64-bit
Architecture Turing Machine

Any program written in a high-level language can be converted into
machine instructions that are executed on a von Neumann
architecture.

Every von Neumann machine implements a Turing machine.

 Can every language implement a Turing machine? If so, all
languages would be equally powerful.

Memory Operations, Finite
states, Conditional transitions

Different Languages

Python

Java

C/C++

Scheme

Intel 64-bit
Architecture Turing Machine

Any program written in a high-level language can be converted into
machine instructions that are executed in a von Neumann
architecture.

Every von Neumann machine implements a Turing machine.

Every high-level language is “Turing-complete”, and so languages
have essentially the same descriptive power as one another.

Memory Operations, Finite
states, Conditional transitions

Different Languages

Python

Java

C/C++

Scheme

Intel 64-bit
Architecture

In fact, every modern language can utilize every machine
instruction, and the primary differences between languages are in
syntax and expressiveness.

However, there is often a tradeoff: the more “low-level” a language,
the better the performance.

Categories and Uses
• Imperative

Python: Interpreted, Easy to prototype ideas
Java : Interpreted/Compiled, Platform-independent
C/C++: Compiled, General purpose
PHP: Interpreted/Compiled, Web scripting

• Functional
LISP/Scheme: Interpreted, no differentiation between
data/instructions

Languages are translated to machine code by either a compiler
or interpreter.

