
Functional
Programming IV

Spring 2014
Carola Wenk

Data Structures in Scheme
• Scheme does not appear to have arrays, references, or

pointers. Can we still represent the data structures we’ve
talked about?

Abstractly, this is just a list, and that’s all we need to know.

1 2 99 4 3 5

(1 2 99 4 3 5)

Data Structures in Scheme
• Scheme does not appear to have arrays, references, or

pointers. Can we still represent the data structures we’ve
talked about?

55

33 100

32 45 56 101

What is the recursive definition of a binary search tree?

Data Structures in Scheme
• Scheme does not appear to have arrays, references, or

pointers. Can we still represent the data structures we’ve
talked about?

55

33 100

32 45 56 101

(55 (33 (32) (45))(100 (56) (101)))

Any linked structure can actually be represented by a nested list.

How do we find an element in a binary search tree?

Binary Search Trees
• In Scheme, a binary search tree can be treated as a nested

list. Does our method to find an element in a binary search
tree need to be updated?

Actually, for some inputs this might cause a runtime error. Why?

(define (bst-find T x)
(if (equal? T '()) #false

(cond ((= x (car T)) #true)
((< x (car T)) (bst-find (car (cdr T)) x))
(else (bst-find (car (cdr (cdr T))) x)))))

Binary Search Trees
• In Scheme, a binary search tree can be treated as a nested

list. Does our method to find an element in a binary search
tree need to be updated?

(define (bst-find T x)
(if (equal? T '()) #false

(cond ((= x (car T)) #true)
((< x (car T)) (if (null? (cdr T))

#f
(bst-find (car (cdr T)) x)))

(else (if (null? (cdr T))
#f
(bst-find (car (cdr (cdr T))) x))))))

What is the running time to evaluate this function?

As before, it is dependent on the (nesting) depth or height of
the tree.

Higher Order Functions
Scheme’s methodology for evaluating functions allows us to

actually pass functions as parameters to other functions.

(define (add4 x) (+ 4 x))
(define (add5 x) (+ 5 x))

(define (mult2 f y) (* 2 (f y)))

Functions can also be declared “anonymously” using the
lambda keyword:

(mult2 (lambda (x) (+ 6 x)) 7)

(mult2 (lambda (x) (* x x)) 7)

(mult2 add5 7)

Defining Functions

In fact, the syntax for defining functions:
(define (f x) body)

is a shortcut for:
(define f (lambda (x) body))

Map and Reduce
The map function in Scheme takes a function and a list as
arguments and applies the function to each element of the list.

(map (lambda (x) (+ x 1)) ‘(1 2 3 4 5 6))

The foldr function in Scheme takes a (binary) function, an
initial value and a list as arguments and applies the function
“right-to-left”.

(foldr + 0 ‘(1 2 3 4 5 6))

(foldr (lambda (x y) (+ x y)) 0 ‘(1 2 3 4))

Map and Reduce
The map function in Scheme takes a function and a list as
arguments and applies the function to each element of the list.

(map (lambda (x) (+ x 1)) ‘(1 2 3 4 5 6))

The foldr function in Scheme takes a (binary) function, an
initial value and a list as arguments and applies the function
“right-to-left”.

(foldr cons ‘() ‘(1 2 3 4 5))
= (cons 1 (cons 2 (cons 3 (cons 4 (cons 5 ‘())))))
= ‘(1 2 3 4 5)

Map and Reduce
The map function in Scheme takes a function and a list as
arguments and applies the function to each element of the list.

(map (lambda (x) (+ x 1)) ‘(1 2 3 4 5 6))

The foldr function in Scheme takes a (binary) function, an
initial value and a list as arguments and applies the function
“right-to-left”. foldl simply works in the other direction.

(foldl cons ‘() ‘(1 2 3 4 5))
= (cons 5 (cons 4 (cons 3 (cons 2 (cons 1 ‘())))))
= ‘(5 4 3 2 1)

Google’s MapReduce framework was inspired by constructs in
LISP. The strength of this framework is that Map and Reduce
can be done in parallel.

Google’s MapReduce framework was inspired by constructs in
LISP. The strength of this framework is that Map and Reduce
can be done in parallel.

Map

Reduce

