
Functional
Programming II

Spring 2014
Carola Wenk

List Manipulation
• Of course, more sophisticated algorithms will require us to

access parts of a list.

• The cons function prepends an element to a list.

• The car function returns the first element of a list.

• The cdr function removes the first element of a list, and
returns the remaining list.

• These basic functions are used to implement all of the list
operations we’ve seen (e.g. indexing and slicing), and many
of these are implemented in the Scheme standard library.

List Manipulation
List functions in the Scheme standard library:

• The list function returns a list of objects.

• The length function returns the length of a list.

• The append function concatenates multiple lists.

• The reverse function reverses a list.

• One can combine up to four car and cdr in one function:
The (cadr L) function is short for (car (cdr L))

Variable Binding
(let ([<var> <binding>] ...) <body>)

• (let ([a 5])
(+ a 7))

evaluates to: 12

• (let ([a 5] [b 7])
(+ a b))

evaluates to: 12

• This works for functions as well:
(let ([f +])

(f 1 2))
evaluates to: 3

Searching A Sorted List

median

Binary Search:
1. Test whether the is less than the median (if it is equal,
we are done).

2. Recursively search the half of the list that is in.

3. We are done when the “correct” side of the list is empty.

Binary Search in Scheme
• The structure of the Scheme function clearly corresponds to

our previous recursive implementations:

(define (bsearch L x)
(let ([mid (quotient (length L) 2)])
(if (equal? L '())

#f
(cond ((= x (list-ref L mid))

#t)
((< x (list-ref L mid))
(bsearch (take L mid) x))
(else
(bsearch (drop L (+ 1 mid)) x))))))

How long does this algorithm take to execute?

It actually depends - how long does list-ref take?

Binary Search in Scheme
• The structure of the Scheme function clearly corresponds to

our previous recursive implementations:

(define (bsearch L x)
(let ([mid (quotient (length L) 2)])
(if (equal? L '())

#f
(cond ((= x (list-ref L mid))

#t)
((< x (list-ref L mid))
(bsearch (take L mid) x))
(else
(bsearch (drop L (+ 1 mid)) x))))))

Interestingly, we don’t really know!
If the list operations take constant time, then this implementation
is logarithmic in the list size.
Otherwise?

Correctness
(define (bsearch L x)
(let ([mid (quotient (length L) 2)])
(if (equal? L '())

#f
(cond ((= x (list-ref L mid))

#t)
((< x (list-ref L mid))
(bsearch (take L mid) x))
(else
(bsearch (drop L (+ 1 mid)) x))))))

Base Case: If the input list is empty, then clearly x is not in it.

Inductive Step: Let be the length of the input list L, and suppose
that bsearch works correctly for any list of length less than . Now,
consider two cases: either x is the median of L, or it isn’t. If it is,
our code correctly handles that case and we’re done. If not,
bsearch will be called on a list with fewer than elements, and
we’re done.

