
Functional
Programming I

Spring 2014
Carola Wenk

What we’ve seen so far

• In Python, Java, C/C++, a program went about its business
by executing a sequence of statements (in a function, loop, if
statement, etc).

#include <stdio.h>

struct my_node {
int data;
my_node* next;

};

int main() {
my_node* p, q;

p = new my_node;
p -> data = 15;
q = p;
free(p);
q -> data = 99;
return 0;

}

def f(a, b):
print “this is function f”
return a+b;

x = 1; y = 2; evens = 0; odds = []
print f(1, 2)
print f('z', f('a', 'b'))
for i in range(1,10):

if (i % 2 == 0):
evens += i

else:
odds.append(i)

print evens; print sum(odds)

Sorting Specifications

Array Algorithm/
Program

Sorted
Array

A_in = [2,1,9, ...]
For all i in [0..n-2]:

A_out[i] <= A_out[i+1]

We want to specify an input, and what the output should look
like, using first-order logic.

Sorting Specifications

List Algorithm/
Program

Sorted
List

L_in = [2,1,9, ...]
For all i in [0..n-2]:

L_out[i] <= L_out[i+1]

We want to specify an input, and what the output should look
like, using first-order logic.

Program Execution and Logic

Input Program Output
Specification

For our purposes, we can view program execution as the
application of a (complicated) logical formula to the given input.

When the output specification is guaranteed to follow from any
execution (i.e., for all executions), we say the program is correct.

Program Execution and Logic

So, there is a natural connection between a logical specification
for the output and the program itself (regardless of the language).

Deriving the formula for a computer program is somewhat
cumbersome -- we will use other techniques to prove this
implication.

What does testing a program on selected inputs prove?

?

Program Execution and Logic

• For a particular language, we focused on arguing the input was
transformed in such a way that it satisfied some logical property at the end
of execution. Then, we argued that this property implied correctness.

• Our (correct) program is translated to machine code that follows roughly the
same pattern (if-then, conditional, assignment, etc.).

• But something doesn’t match - we’re trying to associate a logical function
with the program. Is Python/Java/C/C++ the best way?

<statement 1>
<statement 2>
<statement 3>
...

Input Output
Specification

Machine Code
<instruction 1>
<instruction 2>
<instruction 3>
...

Program in Language X

In An Ideal World

Input Function Output
Specification

Ideally we’d be able to just give a function instead of a program, and
not worry about writing a sequence of statements that produce the
right .

Functional Programming
Define a function, and let the runtime system do the
work.

A functional programming language must be extremely
high level, and so it is usually even more highly-
managed than Python.

What would the syntax of such a language look like?
Would we use pure logic?

Scheme
• Scheme is based on the LISP language, developed in 1958. It

is actually the second oldest programming language!

• Scheme uses “Polish” (i.e., prefix) notation:

• In (pure) Scheme, “everything is a list”, and there is no
concept of “sequential” execution. Also, instead of variable
assignment, generally, variable binding is used.

(* 3 (+ (+ 1 (* 2 4)) (- 7 1)))

(define (f n)
(if (= n 0)

1
(* n (f (- n 1)))))

Running Scheme Programs

(define (f n) (if (= n 0) 1 (* n (f (- n 1)))))

Scheme is interpreted, and so there is no “main” method,
we simply call functions as needed.

Scheme source code is simply a collection of (possibly
interdependent) functions, followed by function
evaluations

Each function, in reality, is just a nested (linked) list.

(define (f n) (if (= n 0) 1 (* n (f (- n 1)))))

Running Scheme Programs
Scheme is interpreted, and so there is no “main” method,

we simply call functions as needed.

Scheme source code is simply a collection of (possibly
interdependent) functions, followed by function
evaluations

Each function, in reality, is just a nested (linked) list.

Running Scheme Programs

(define (f n) (if (= n 0) 1 (* n (f (- n 1)))))

Scheme is interpreted, and so there is no “main” method,
we simply call functions as needed.

Scheme source code is simply a collection of (possibly
interdependent) functions, followed by function
evaluations

Each function, in reality, is just a nested (linked) list.

Running Scheme Programs

(define (f n) (if (= n 0) 1 (* n (f (- n 1)))))

Scheme is interpreted, and so there is no “main” method,
we simply call functions as needed.

Scheme source code is simply a collection of (possibly
interdependent) functions, followed by function
evaluations

Each function, in reality, is just a nested (linked) list.

Running Scheme Programs

(define (f n) (if (= n 0) 1 (* n (f (- n 1)))))

Variable scope is defined by nesting, and a function is really
just a list.

Scheme is interpreted, and so there is no “main” method,
we simply call functions as needed.

Scheme source code is simply a collection of (possibly
interdependent) functions, followed by function
evaluations

Each function, in reality, is just a nested (linked) list.

How Do We Prove Correctness?

(define (f n)
(if (= n 0)

1
(* n (f (- n 1)))))

Input Output
Specification

Base Case: (f 0) = 1 = 0!

Inductive Step: Suppose that (f (- n 1)) = Then,
since we’re multiplying by n, (f n) =

List Manipulation
• Of course, more sophisticated algorithms will require us to

access parts of a list.

• The cons function prepends an element to a list.

• The car function returns the first element of a list.

• The cdr function removes the first element of a list, and
returns the remaining list.

• These basic functions are used to implement all of the list
operations we’ve seen (e.g. indexing and slicing), and many
of these are implemented in the Scheme standard library.

