Data Structures and
Object-Oriented Design
\Vall

Spring 2014
Carola Wenk

Collections and Maps

« The Collection interface is for storage and access, while a
Map Interface is geared towards associating keys with objects.

< <Interface>>
Collection
< <Interface>>
<<lnt§:face>> mxtants List
t
<<Interface>> 4 A
JAN Queue / i
\
ArrayList
< <Interface>> d ZIS : Vector A
HashSet SortedSet \ implements | <<Interface>>
\ Deque I
q] I
7’ ’ \\ D : é
, d \ \]
TreeSet LinkedHashSet \ . Stack
L I
\
LinkedList

< <Interface>>
Map

w4 B

<<Interface>>
SortedMap

D\

’ ’ \ Y
HashTable LinkedHashMap HashMap TreeMap

Student database problem

Tulane’s student database D stores n records:
record

ID

Name

Address eD._get(key)

Grades

=D.remove(key)

How should the data structure D be organized?

Direct-Access Table (array)

e Suppose every key is a different number: K < {0, 1, ..., m-1}
e Set up an array D[O . . m—1] such that D[key] = value for every
record, and D[key]=null for keys without records.

00000006 000747111

John Welch David Filo
Jones

Direct-Access Table (array)

class DirectAccessTable(
MyObject [] dataTable = null;

DirectAccessTable (int n) {
dataTable = new MyObject [n];
ol it dom —Eal0s gt des ez st aile 4ot}

daailelol el ER=s R

}

void add (MyObject x) {
dataTable [x.key] = x;

}

boolean find(int key) {
if (dataTablel[key] != null)
return true;
===
return false;

We can use the key itself to index into the data being stored.

Direct-Access Table (array)

e Suppose every key is a different number: K < {0, 1, ..., m-1}
e Set up an array D[O . . m—1] such that D[key] = value for every
record, and D[key]=null for keys without records.

00000006 000747111
John Welch David Filo
Jones

add, find, remove take O(1) time.

Direct-Access Table (array)

e Suppose every key is a different number: K < {0, 1, ..., m-1}
e Set up an array D[O . . m—1] such that D[key] = value for every
record, and D[key]=null for keys without records.

00000006 000747111

John Welch David Filo
Jones

Problem: The range of keys can be large:

* 64-bit numbers (which represent
18,446,744,073,709,551,616 different keys),

 Character strings (even larger!).

Hash functions

Solution: Use a hash function h to map the

universe U of all keys into D
{O, 1= n—l}: 0
h

h(k,)
h(k,)
h(k)
h(ks)
n-1

As each key Is Inserted, h maps It to a slot of D.

Hash functions: Examples

Can be any number; preferably a prime number.]

e If key IS a number:
h,(key) = key % p *, for example key % 13

e |If key Is a string:
. .C Co) = (G312 +C A 31N~ b6 N

e Java classes have a hashCode () method

(most of which do not have meaningful implementations. The String
class has the above implementation.)

A Hash Table for Strings

class StringHashTable (
o Coinsie] @k iinrs Rl Ho b= — i HLA 1

StringHashTable (int n) {
dataTable = new Stringl[n];
ey SR S e It o HS N SRl o TR 1 =t

Gatsatalilied L= nud 1y

}

private int hashCode (String S) {
return Math.abs (S.hashCode ()) %dataTable.length;
J

public void add(String S) {
dataTable [hashCode(S)] = S;
}

public boolean find(String S) { ’,,4”"

if (dataTable[hashCode(S)] != null)
return true;

else
return false;

Assumes a perfect
hash function.

Hash functions

Solution: Use a hash function h to map the

universe U of all keys into D
{O, 1= n—l}: 0
h(k,)
h(k,)
h(k;) = h(ks)
h(ks)
n-1

When a record to be inserted maps to an already
occupied slot in D, a collision occurs.

Resolving collisions by chaining

*Records 1n the same slot are linked into a list.
T

| ' 49| ——186| —1 92

h(49) = h(86) = h(52) = i

Resolving collisions by open
addressing (probing)

No storage Is used outside of the hash table itself.
eInsertion systematically probes the table until an
empty slot Is found:
e Linear probing: Try the next, the 2" next, the
3" next, the 41 next, ... slot
e Quadratic probing: Try the next, the 4t next,
the 9t next, the 16™ next,... slot

e Rehashing: Repeatedly apply another hash
function to find a sequence of slots

Resolving collisions by open
addressing

 Search uses the same probe sequence,
terminating successfully if it finds the key and
unsuccessfully If it encounters an empty slot.

*The table may fill up, and deletion is difficult (but
not impossible; usually deleted slots are not
deleted but only marked as “deleted”).

Probing

This i1Is known as a
“linear” probe.

class StringHashTable {

dlies
@

Setiewre ' Final int a
Sl Bl nal. dnt b

private int probe(int h, int 1i){
return (h + (a*i + b)) % dataTable.length;
)

PUBEEe"Void add (String S {

ifmte ht — hashCode (S) :

10 =

SR clirrent-——-h;

while (dataTable [current] !=null) {
current = probe(h,i);
1++;

}

dataTable [current] = S;

Probing

class StringHashTable ({ This Is known as a
ééétic RA STl bealeli] L U=l quadratlc prObe
SIRCIEREGINET a1 1nt b =,0;

L ST T e s R R e o M T R

ERdvatedint probe (int h; ‘dint i)
return (h + (a*i*i +b*i + c)) % dataTable.length;
}

public void add(String S) {
int h = hashCode(S) ;
BB 1 =11 -
s current = h;
while (dataTable [current] !=null) {
current = probe(h,i);
1++;

)

dataTable [current] = S;

What happens if the data table is “full”?

Hash Functions

« Really, hashing just a “trick” that makes use of key values
being in a small range. When can we use this trick?

- Let {f be our elements of a particular data type, and let 7,
be the size of our table. We need a mapping from elements
to table indices.

« We want the hash function to have the following properties:

h:U— {0,1,...,n—1}
r =y = h(z) = h(y)

Choosing a hash function

« Theoretically, it is possible to devise a “perfect” hash function,
but these solutions are not often used in practice.

« Hash functions are typically “engineered” to work well in
practice for particular data types (e.g. String).

« Finding a good practical hash function is an ongoing research
topic.

 Runtime depends on the

number of keys stored in table
number of slots in table

load factor =

« For good hash functions, few collisions occur and the runtime
IS close to O(1)

Hash Tables

A hash table is defined by a hash function and the policy by which
we resolve collisions.

h(z)

Add Find

Probing:

Chaining:

What is the absolute worst-case performance of a hash table under
either collision policy?

Hash Tables

A hash table is defined by a hash function and the policy by which
we resolve collisions.

h(x)
Add Find
Probing: O(n) O(n)
Chaining: O(n) O(n)

What is the absolute worst-case performance of a hash table under
either collision policy?

Hash Tables

A hash table is defined by a hash function and the policy by which
we resolve collisions.

h(z)

Add Find
Probing: ~ 0(1) ~ 0(1)
Chaining: ~ 0(1) ~ 0(1)

Hashing is a black art - we strive to choose a table size and
hashing function that gives good performance.

Collections and Maps

« The Collection interfaces is for storage and access, while a
Map Interface is geared towards associating keys with objects.

< <Interface>>
Collection
< <Interface>>
<<lnt§:face>> mxtants List
t
<<Interface>> 4 A
JAN Queue / i
\
ArrayList
< <Interface>> d ZIS : Vector A
HashSet SortedSet \ implements | <<Interface>>
\ Deque I
q] I
7’ ’ \\ D : é
, d \ \]
TreeSet LinkedHashSet \ . Stack
L I
\
LinkedList

< <Interface>>
Map

w4 B

<<Interface>>
SortedMap

D\

’ ’ \ Y
HashTable LinkedHashMap HashMap TreeMap

