
Data Structures and
Object-Oriented Design

VIII
Spring 2014

Carola Wenk

Collections and Maps
• The Collection interface is for storage and access, while a

Map interface is geared towards associating keys with objects.

Student database problem

Tulane’s student database D stores n records:
record

key Operations on D:

•D.put(key,value)

•D.get(key)

•D.remove(key)

How should the data structure D be organized?

valueName

Address

Grades

ID
“add”

“find”

Direct-Access Table (array)
• Suppose every key is a different number: K  {0, 1, …, m–1}
• Set up an array D[0 . . m–1] such that D[key] = value for every
record, and D[key]=null for keys without records.

D

00000006

John Welch
Jones

. . .
000747111

David Filo

Direct-Access Table (array)
class DirectAccessTable{

MyObject[] dataTable = null;

DirectAccessTable(int n){
dataTable = new MyObject[n];
for (int i = 0; i < n; i++)

dataTable[i] = null;
}

void add(MyObject x){
dataTable[x.key] = x;

}

boolean find(int key){
if (dataTable[key] != null)

return true;
else

return false;
}

}

We can use the key itself to index into the data being stored.

Direct-Access Table (array)
• Suppose every key is a different number: K  {0, 1, …, m–1}
• Set up an array D[0 . . m–1] such that D[key] = value for every
record, and D[key]=null for keys without records.

add, find, remove take (1) time.

D

00000006

John Welch
Jones

. . .
000747111

David Filo

Direct-Access Table (array)
• Suppose every key is a different number: K  {0, 1, …, m–1}
• Set up an array D[0 . . m–1] such that D[key] = value for every
record, and D[key]=null for keys without records.

D

00000006

John Welch
Jones

. . .
000747111

David Filo

Problem: The range of keys can be large:
•64-bit numbers (which represent
18,446,744,073,709,551,616 different keys),

•Character strings (even larger!).

As each key is inserted, h maps it to a slot of D.

Hash functions

Solution: Use a hash function h to map the
universe U of all keys into
{0, 1, …, n–1}:

U

k1

k2 k3

k4

0

n–1

h(k1)
h(k4)

h(k2)

h(k3)

D

h

Hash functions: Examples

• If key is a number:
h1(key) = key % p , for example key % 13

• If key is a string:
h2(cn-1…c1c0) = (c0*31n-1 +c1*31n-2 +…+cn-1)% p

• Java classes have a hashCode() method
(most of which do not have meaningful implementations. The String
class has the above implementation.)

Can be any number; preferably a prime number.

A Hash Table for Strings
class StringHashTable {

String[] dataTable = null;

StringHashTable(int n) {
dataTable = new String[n];
for (int i = 0; i < n; i++)

dataTable[i] = null;
}

private int hashCode(String S) {
return Math.abs(S.hashCode())%dataTable.length;

}

public void add(String S) {
dataTable[hashCode(S)] = S;

}

public boolean find(String S) {
if (dataTable[hashCode(S)] != null)

return true;
else

return false;
}

}

Assumes a perfect
hash function.

Hash functions

As each key is inserted, h maps it to a slot of D.

Solution: Use a hash function h to map the
universe U of all keys into
{0, 1, …, n–1}:

U

k1

k2 k3

k4

k5

0

n–1

h(k1)
h(k4)

h(k2)

h(k3)

When a record to be inserted maps to an already
occupied slot in D, a collision occurs.

D

= h(k5)

Resolving collisions by chaining

•Records in the same slot are linked into a list.

h(49) = h(86) = h(52) = i

T

49 86 52i

Resolving collisions by open
addressing (probing)

No storage is used outside of the hash table itself.
•Insertion systematically probes the table until an
empty slot is found:

• Linear probing: Try the next, the 2nd next, the
3rd next, the 4th next, … slot
• Quadratic probing: Try the next, the 4th next,
the 9th next, the 16th next,… slot
• Rehashing: Repeatedly apply another hash
function to find a sequence of slots

Resolving collisions by open
addressing

• Search uses the same probe sequence,
terminating successfully if it finds the key and
unsuccessfully if it encounters an empty slot.

•The table may fill up, and deletion is difficult (but
not impossible; usually deleted slots are not
deleted but only marked as “deleted”).

Probing

class StringHashTable {
...
static final int a = 1;
static final int b = 0;

private int probe(int h, int i){
return (h + (a*i + b)) % dataTable.length;

}

public void add(String S){
int h = hashCode(S);
int i=1;
int current = h;
while(dataTable[current]!=null){

current = probe(h,i);
i++;

}
dataTable[current] = S;

}
}

This is known as a
“linear” probe.

Probing

class StringHashTable {
...
static final int a = 1;
static final int b = 0;
Static final int c = 0;

private int probe(int h, int i){
return (h + (a*i*i +b*i + c)) % dataTable.length;

}

public void add(String S){
int h = hashCode(S);
int i=1;
int current = h;
while(dataTable[current]!=null){

current = probe(h,i);
i++;

}
dataTable[current] = S;

}
}

This is known as a
“quadratic” probe.

What happens if the data table is “full”?

Hash Functions

• Really, hashing just a “trick” that makes use of key values
being in a small range. When can we use this trick?

• Let be our elements of a particular data type, and let
be the size of our table. We need a mapping from elements
to table indices.

• We want the hash function to have the following properties:

Choosing a hash function

number of keys stored in table
number of slots in table

• Theoretically, it is possible to devise a “perfect” hash function,
but these solutions are not often used in practice.

• Hash functions are typically “engineered” to work well in
practice for particular data types (e.g. String).

• Finding a good practical hash function is an ongoing research
topic.

• Runtime depends on the

load factor =

• For good hash functions, few collisions occur and the runtime
is close to O(1)

Hash Tables
A hash table is defined by a hash function and the policy by which
we resolve collisions.

Chaining:

Add Find

Probing:

...

What is the absolute worst-case performance of a hash table under
either collision policy?

Hash Tables
A hash table is defined by a hash function and the policy by which
we resolve collisions.

Chaining:

Add Find

Probing:

...

What is the absolute worst-case performance of a hash table under
either collision policy?

Hash Tables
A hash table is defined by a hash function and the policy by which
we resolve collisions.

Chaining:

Add Find

Probing:

...

Hashing is a black art - we strive to choose a table size and
hashing function that gives good performance.

Collections and Maps
• The Collection interfaces is for storage and access, while a

Map interface is geared towards associating keys with objects.

