
Data Structures and 
Object-Oriented Design 

V
Spring 2014

Carola Wenk



Other Data Types/Structures
• We’ve seen that the actual implementation of the data type 

only matters in the overall performance (and possibly 
functionality).

class BinarySearchTree {

public BinarySearchTree() {...}

}

What operations did binary search trees offer us, and how did it 
differ in implementation or functionality?



Other Data Types/Structures
• We’ve seen that the actual implementation of the data type 

only matters in the overall performance (and possibly 
functionality).

class BinarySearchTree {

public BinarySearchTree() {...}

public void add(int x} {...}

public void remove(int x) {...}

public boolean find(int x) {...}

}

Do we even need to name this class to refer to its data structure?



Other Data Types/Structures
• We’ve seen that the actual implementation of the data type 

only matters in the overall performance (and possibly 
functionality).

class OrderedCollection {

public OrderedCollection() {...}

public void add(int x} {...}

public void remove(int x) {...}

public boolean find(int x) {...}

}

Do we even need to name this class to refer to its data structure? 
Not really - the user doesn’t need to know how the data is 
organized.



What about Type Compatibility?
• So far, our class definitions have been defined to manipulate 

a single type (usually int). 

• Do we really have to define a different class for a stack of 
strings? Can we define a general-purpose stack?

class intStack {

private int[] S = null;
private int top;

public Stack(int capacity) {
S = new int[capacity];
top = capacity;

}

public int pop() {
return S[top++];

}

public void push(int x) {
S[--top] = x;

}

class StringStack {

private String[] S = null;
private int top;

public Stack(int capacity) {
S = new String[capacity];
top = capacity;

}

public String pop() {
return S[top++];

}

public void push(String x) {
S[--top] = x;

}



Object-Oriented Design
• In Java, “everything is an object” and different classes can be 

defined to be compatible according to functionality.

class B extends A {

...

}

class A {

...

}



Object-Oriented Design

class B extends A {

public void g() {...}

...

}

class A {

public void f() {...}
...

}

The best way to think of type compatibility is that it is always 
acceptable to extend functionality, but never ok to remove it.

...

A x = new A();
B y = new B();

x.f();
y.f();

y.g();
x = new B();
// not allowed!
x.g();
x.f();



Object-Oriented Design

class B extends A {

public void g() {...}

...

}

class A {

public void f() {...}
...

}

Java’s type checking is simple: a reference must “hold” at least 
as much functionality as it was declared to (more is ok).

...

A x = new A();
B y = new B();

x.f();
y.f();

y.g();
x = new B();
// not allowed!
x.g();
x.f();





Rules of Inheritance

class B extends A {

public void f(int x) {
super.f(x)

}

public void g() {...}

...

}

class A {

public void f(int x) {
System.out.println(x);

}
...

}

• The class extending functionality is called a subclass, and the 
class being extended is called the superclass. We can access 
inherited attributes using the super keyword.



Rules of Inheritance

class B extends A {

public void f(int x) {
super.f(2*x)

}

public void g() {...}

...

}

class A {

public void f(int x) {
System.out.println(x);

}
...

}

• The class extending functionality is called a subclass, and the 
class being extended is called the superclass. We can access 
inherited attributes using the super keyword.



Rules of Inheritance
class B extends A {

private double b; 

public B(int x, double y) {
super(x); b = y;

}

public void f(int x) {
super.f(2*x);

}

public void g() {...}

...
}

class A {

protected int a;

public A(int x) { a = x; }

public void f(int x) {
System.out.println(x);

}
...

}

• The class extending functionality is called a subclass, and the 
class being extended is called the superclass. We can access 
inherited attributes using the super keyword.



Object-Oriented Design

class B extends A {

public void g() {...}

...

}

class A {

public void f() {...}
...

}

...

A x = new A(1);
B y = new B(1, 2.0);

x.f(1);
y.f(1);

y.g();
x = new B();
x.g();
x.f();

The fancy name for how references in Java work is type 
polymorphism.



Object-Oriented Design

class B extends A {

public void g() {...}

...

}

class A {

public void f() {...}
...

}

These restrictions on references allow us to check for type 
violations at compile-time - why is this important?

...

A x = new A(1);
B y = new B(1, 2.0);

x.f(1);
y.f(1);

y.g();
x = new B();
x.g();
x.f();



protected access
• Any attributes that are declared protected are accessible 

by subclasses, but not the “outside world.”

class B extends A {

public void g() {...}

...

}

class A {

protected void f() {...}

...

}

...

A x = new A();
B y = new B();

x.f();
// not allowed!
y.f();

y.g();
x = new B();
x.g();



Java Access Rules

World

Subclass

Package

class

private <none> publicprotected



A

B

We can be flexible about how we assign objects, as long as 
these assignments respect the defined hierarchy of compatibility:

Big Picture



A

B

We can be flexible about how we assign objects, as long as 
these assignments respect the defined hierarchy of compatibility:

A

B compatible with 
type A

compatible with 
type B

Big Picture



We can be flexible about how we assign objects, as long as 
these assignments respect the defined hierarchy of compatibility:

A

B

compatible with 
type A

compatible with 
type A and type 
B

Big Picture





Using Inheritance
• Note that references are essentially “unidirectional.”

• How general-purpose can we make types using Java’s object 
model?

class Stack {

private Object[] S = null;
private int top;

public Stack(int capacity) {
S = new Object[capacity];
top = capacity;

}

public Object pop() {
return S[top++];

}

public void push(Object x) {
S[--top] = x;

}



Limitations
• Inheritance is useful for extending functionality, but it can’t do 

everything. 

• By defining Stack to hold Objects, we “lose” functionality 
when we remove things from the stack:

...

Stack S = new Stack(10);
S.push(new Integer(15));
S.push(new String(“foo”));

// this is the only legal way to 
// retrieve items - why?
Object a = S.pop();
Object b = S.pop();

// what are the types of a and b?



Type Casting
• Java actually allows us to regain functionality by “casting” the 

returned Object into the “correct” type.

• This helps us use one class declaration to create different 
kinds of Stacks, but does not allow a heterogeneous Stack.

...

Stack S = new Stack(10);
S.push(new Integer(15));
S.push(new String(“foo”));

// this is the only legal way to 
// retrieve items - why?
Integer a = (Integer) S.pop();
String b = (String) S.pop();

// what are the types of a and b?



Java Generics
• Java also provides a mechanism to make classes generic, 

which avoids the need for casting: 

• This way, we can use the same class definition for multiple 
types (without losing functionality), and errors in type usage 
can still be caught at compile-time.

class MyClass<T> {

private T member_variable;

public T foo(T x) {
...

}

}



Java Generics
• Java also provides a mechanism to make classes generic, 

which avoids the need for casting:

• Given the way Java expects us to declare everything up front 
- is there a potential problem with using generic types?

class MyClass<T> {

private T member_variable;

public T foo(T x) {
...

}

}



Specialized classes can implement similar functionality - but our 
rules (so far) for references don’t allow us to refer to such 
instances interchangeably.

B’

C C’C’’

A

B

Another Problem

What if these classes
implement some similar 

functionality?



Java Interfaces
• We can specify that a Java class implements a particular kind 

of functionality defined as an interface.

interface Collection {

boolean add(Object o);
boolean remove(Object o);
boolean contains(Object o);
boolean equals(Object o);

}

class Foo implements Collection {
...

}

class Bar implements Collection {
...

}

Foo X = new Foo();
Bar Y = new Bar();

Collection C;

C = X;
C = Y;

Interfaces in Java can be extended like classes, and follow the 
same inheritance rules.



Recap: Object-Oriented Design
In Java, everything is an “Object” - what does this mean?

What are the rules of inheritance for class attributes?

What are the rules for declaring and using references to class 
instances?

What are the differences between generic types and 
polymorphic types?

What gap in the object-oriented paradigm do interfaces help 
address?


