Data Structures and
Object-Oriented Design
1

Spring 2014
Carola Wenk

Stacks

 Are the methods in this class guaranteed to work? What kind
of specifications can we guarantee to ensure the correctness
of push and pop?

public int-pop() {
it (top >= 0)
« How does pop handle empty stacks? return S[top--];
else
public int pop() { return -999;
return S[top--]; 1
¥ public int pop(g =X

1T (top >= 0)
return S[top--];

1

public int pop() {
it (top >= 0)
return S[top--];
else
throw new RuntimeException(““Stack 1s empty”’);

}

Software Can Kill

« Meeting specifications is of critical importance when software is
used to control dangerous hardware.

The Therac-25 relied on a software system to deliver different kinds
of radiation: electron beam therapy, and X-ray therapy. These two
types of radiation are used to treat different types of cancer.

Software Can Kill

Meeting specifications is of critical importance when software is used
to control dangerous hardware.

Specification
(M — —B A ~S)A
B = False —:M—)B/\S)
e

= rols
Electron Mode X- Ray Mode
M = True M = False

The Therac-25 radiation therapy system needed to guarantee that a
shield is always in place when in “X-ray” mode. In certain instances
the specification was not met, and as a result patients received 100x
the allowable amount of radiation.

Software Can Kill

Meeting specifications is of critical importance when software is used
to control dangerous hardware.

Specification
(M — —B A ~S)A
B = False | | (~M — BAS)

B iFalse
Electron Mode X-Ray Mode
M = True M = False

An investigative commission found that the Therac-25 failed due to
poor software development practices that led to a system that was
difficult to verify or test.

Stack Growth

Stack “Buffer Exploits”

Unallocated Stack Space

c[o]

Char c[12]

c[11]

Char *bar

Saved Frame pointer

Return Address

Parent Routine's Stack

sassalppy Alowsy

Stack Growth

Unallocated Stack Space

h e |
o \0
Char c[12]
Char *bar

Saved Frame pointer

Return Address

sassalppy Aowsp

Address
0x80C03508

(-

Stack Growth

Unallocated Stack Space
A A A A
A A A A
:
A A A A 3
2
B
A |l a | a| a [
A A A A
Little Endian
0x80C03508
\x08 | \x35 | \xCO | \x80 A
Parent Routine's Stack

[wikipedia]

Nearly every operating system utilizes a stack to manage the
function calls. Programs can exploit the lack of a stack buffer
check to modify the operating system and execute arbitrary code!

Java Runtime System

[import —;

class HelloWorld { -

public void f(int x1, char x2, ...) { » Java COI I lpller
i--

public long g(boolean y1, float y2, ...) {

L

private int h(double z1, int z2, ...) {

i--

public static void main(String [] args) {
System.out.printIn(“hello world!”)
System.out.printin(*“goodbye world!””)

To CPU

® 00 Tic Tac Toe Applet u
|2 > ||| 2| |k riwagner49.com ¢ i \g|
& [I] 2 1Saw a Peaco..a Fiery Tail CMPS 1600 WorkFlowy >» FF

TicTacToe Applet

Version 1.04, April §, 2001.

X

Human is X and moves first, computer is O.
Click a square to begin.
Source code.

This game is simple enough that the applet uses exhaustive tree search (min-max algorithm)
to decide its moves. As such, it cannot be defeated. Most games will be drawn, but it will
win if you let it.

e Software

e Home

PN

Recent “zero-day” exploits (compromising Facebook, Twitter,
Apple) utilize Java applets to circumvent OS security and install
malware.

Tic Tac Toe Applet

e 0o
@ | hg riwagner49.com/Roboti

&3 (1] H# 15Sawa Peaco..a Fiery Tail CMPS 1600 WorkFlowy

TicTacToe Applet

Version 1.04, April 5, 2001.

-

Human is X and moves first, computer is O.
Click a square to begin.
Source code.
This game is simple enough that the applet uses exhaustive tree search (min-max algorithm)
to decide its moves. As such, it cannot be defeated. Most games will be drawn, but it will
win if you let it.

e Software
e Home

E

A Ttmal

Recent “zero-day” exploits involving Java hide malicious code in
Java applets that can circumvent built-in security provisions to
Install malware.

Limitations of Arrays

« One limitation of our iImplementation is that we have a set
capacity for our storage.

“Push” “Pop”

R

Stacks

How do we remove this limitation? In Python, we developed
linked data structures that could “declare” new storage. What

about in Java?

class Node:

def __1nit (self, data = None, next = None):
self.data = data
self.next = None

def str_ (self):
return str(self.data)

L = Node(“a’)
L.next = Node(123)

Stacks

How do we remove this limitation? In Python, we developed

linked data structures that could “declare” new storage. What
about in Java?

class Node({
private int data;
private Node next;

public Node (int d) {
data d;

next TNl

}

publ i¢ SStrangs oS trine (B 1
return Integer.toString(data);

}
)

L = new Node (1) ;
L.next = new Node (123) ;

Array-Based Stack vs. DynamicStack

public class ArrayStack {
final static int DEFAULT_CAPACITY=560;
private int[] S;
private int top;

public ArrayStack(){
this (DEFAULT_CAPACITY);

}

public ArrayStack(int capacity){
S = new int[capacity];
top=-1;

¥

public void push(int x){
S[++top]=x;
}

public int pop(){
if(top>=0)
return S[top--];
else
throw new RuntimeException("Stack is empty.");

}
}

public class Tester{

public static void main(Strinel1 ares) {
ArrayStack stack = new ArrayStack();
stack.push(5);

System.out.println("popped: "+stack.pop());

}
}

public class DynamicStack implements Stack{

private class StackNode {
private int data;
private StackNode next;

public StackNode(int d){
data = d;
next=null;
}
¥

private StackNode top = null;

public void push(int x) {
StackNode temp = new StackNode(x);
temp.next = top;
top = temp;

}

public int pop(){
if (top == null)
throw new RuntimeException("Stack empty!");

int x = top.data;
top = top.next;
return Xx;

}

}

If we change ArrayStack to
DynamicStack, the code still works.

Java Interfaces

 We can specify that a Java class implements a particular kind
of functionality defined as an Interface.

}

public interface Stack {
public int pop();
public void push(int x);

4_———"’——————————————J’—-=§§§§§§§§-~§§“‘*-.‘

public class ArrayStack implements Stack {

public class DynamicStack implements Stack {

public class Tester {

public static void main(String[] args) {
Stack stack = new ArrayStack()
stack.push(5);
System.out.println("popped: "+stack.pop());

}
¥

If we change ArrayStack to
DynamicStack, the code still works.

