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Stacks
• Are the methods in this class guaranteed to work? What kind 

of specifications can we guarantee to ensure the correctness 
of push and pop?

• How does pop handle empty stacks?

public int pop() {
return S[top--];

} public int pop() {
if (top >= 0) 
return S[top--];

}

public int pop() {
if (top >= 0) 
return S[top--];

else
return -999;

}

public int pop() {
if (top >= 0) 
return S[top--];

else
throw new RuntimeException(“Stack is empty”);

}



Software Can Kill
• Meeting specifications is of critical importance when software is 

used to control dangerous hardware.

The Therac-25 relied on a software system to deliver different kinds 
of radiation: electron beam therapy, and X-ray therapy. These two 
types of radiation are used to treat different types of cancer.
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The Therac-25 radiation therapy system needed to guarantee that a 
shield is always in place when in “X-ray” mode. In certain instances 
the specification was not met, and as a result patients received 100x 
the allowable amount of radiation.

Meeting specifications is of critical importance when software is used 
to control dangerous hardware.
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An investigative commission found that the Therac-25 failed due to 
poor software development practices that led to a system that was 
difficult to verify or test. 

Meeting specifications is of critical importance when software is used 
to control dangerous hardware.



Stack “Buffer Exploits”

Nearly every operating system utilizes a stack to manage the 
function calls. Programs can exploit the lack of a stack buffer 
check to modify the operating system and execute arbitrary code!

[wikipedia]



Java Runtime System
import --;

class HelloWorld {
public void f(int x1, char x2, ...) {
...
}

public long g(boolean y1, float y2, ...) {
...
}

private int h(double z1, int z2, ...) {
...
}

public static void main(String [] args) {
System.out.println(“hello world!”)
System.out.println(“goodbye world!”)

}
}
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Recent “zero-day” exploits (compromising Facebook, Twitter, 
Apple) utilize Java applets to circumvent OS security and install 
malware. 



Operating System

Java Virtual Machine

Java “Byte” 
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Recent “zero-day” exploits involving Java hide malicious code in 
Java applets that can circumvent built-in security provisions to 
install malware. 

privileged access



Limitations of Arrays
• One limitation of our implementation is that we have a set 

capacity for our storage.

“Push” “Pop”
class Stack {

...

public Stack(..) {
...

}

public int pop() {
...

}

public void push(int x) {
...

}



Stacks
How do we remove this limitation? In Python, we developed 
linked data structures that could “declare” new storage. What 
about in Java?

class Node:    
def __init__(self, data = None, next = None):        
self.data = data
self.next = None

def __str__(self): 
return str(self.data)

L = Node(‘a’)
L.next = Node(123)

‘a’L: 123



Stacks

class Node{
private int data;
private Node next;

public Node(int d){
data = d;
next = null;

}

public String toString() {
return Integer.toString(data);

}
}

1L: 123

How do we remove this limitation? In Python, we developed 
linked data structures that could “declare” new storage. What 
about in Java?

L = new Node(1);
L.next = new Node(123);



Array-Based Stack vs. DynamicStack
public class DynamicStack implements Stack{

private class StackNode {
private int data;
private StackNode next;

public StackNode(int d){
data = d; 
next=null;

}
}

private StackNode top = null;

public void push(int x) {
StackNode temp = new StackNode(x);
temp.next = top;
top = temp;

}

public int pop(){
if (top == null)
throw new RuntimeException("Stack empty!");

int x = top.data;
top = top.next;
return x;

}
}

public class ArrayStack {
final static int DEFAULT_CAPACITY=50;
private int[] S;
private int top; 

public ArrayStack(){
this(DEFAULT_CAPACITY);

}

public ArrayStack(int capacity){
S = new int[capacity];
top=‐1;

}

public void push(int x){
S[++top]=x;

}

public int pop(){
if(top>=0)
return S[top‐‐];

else
throw new RuntimeException("Stack is empty.");

}
}

public class Tester{
public static void main(String[] args) {
ArrayStack stack = new ArrayStack();
stack.push(5);
System.out.println("popped: "+stack.pop());

}
}

If we change ArrayStack to 
DynamicStack, the code still works.



Java Interfaces
• We can specify that a Java class implements a particular kind 

of functionality defined as an interface.
public interface Stack {
public int pop();
public void push(int x);

}

public class ArrayStack implements Stack {

...

}

public class Tester {
public static void main(String[] args) {
Stack stack = new ArrayStack();
stack.push(5);
System.out.println("popped: "+stack.pop());

}
}

public class DynamicStack implements Stack {

...

}

If we change ArrayStack to 
DynamicStack, the code still works.


