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Stacks

 Are the methods in this class guaranteed to work? What kind
of specifications can we guarantee to ensure the correctness
of push and pop?

public int-pop() {
it (top >= 0)
« How does pop handle empty stacks? return S[top--];
else
public int pop() { return -999;
return S[top--]; 1
¥ public int pop(g =X

1T (top >= 0)
return S[top--];

1

public int pop() {
it (top >= 0)
return S[top--];
else
throw new RuntimeException(““Stack 1s empty”’);

}




Software Can Kill

« Meeting specifications is of critical importance when software is
used to control dangerous hardware.

The Therac-25 relied on a software system to deliver different kinds
of radiation: electron beam therapy, and X-ray therapy. These two
types of radiation are used to treat different types of cancer.
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The Therac-25 radiation therapy system needed to guarantee that a
shield is always in place when in “X-ray” mode. In certain instances
the specification was not met, and as a result patients received 100x
the allowable amount of radiation.
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An investigative commission found that the Therac-25 failed due to
poor software development practices that led to a system that was
difficult to verify or test.



Stack Growth

Stack “Buffer Exploits”

Unallocated Stack Space
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Nearly every operating system utilizes a stack to manage the
function calls. Programs can exploit the lack of a stack buffer
check to modify the operating system and execute arbitrary code!



Java Runtime System

[import —;

class HelloWorld { -

public void f(int x1, char x2, ...) { » Java COI I lpller
i--

public long g(boolean y1, float y2, ...) {

L

private int h(double z1, int z2, ...) {

i--

public static void main(String [] args) {
System.out.printIn(“hello world!”)
System.out.printin(*“goodbye world!””)

To CPU
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TicTacToe Applet

Version 1.04, April §, 2001.

X

Human is X and moves first, computer is O.
Click a square to begin.
Source code.

This game is simple enough that the applet uses exhaustive tree search (min-max algorithm)
to decide its moves. As such, it cannot be defeated. Most games will be drawn, but it will
win if you let it.

e Software

e Home

PN

Recent “zero-day” exploits (compromising Facebook, Twitter,
Apple) utilize Java applets to circumvent OS security and install
malware.
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TicTacToe Applet

Version 1.04, April 5, 2001.
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Human is X and moves first, computer is O.
Click a square to begin.
Source code.
This game is simple enough that the applet uses exhaustive tree search (min-max algorithm)
to decide its moves. As such, it cannot be defeated. Most games will be drawn, but it will
win if you let it.

e Software
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Recent “zero-day” exploits involving Java hide malicious code in
Java applets that can circumvent built-in security provisions to
Install malware.



Limitations of Arrays

« One limitation of our iImplementation is that we have a set
capacity for our storage.

“Push” “Pop”

R




Stacks

How do we remove this limitation? In Python, we developed
linked data structures that could “declare” new storage. What

about in Java?

class Node:

def __1nit (self, data = None, next = None):
self.data = data
self.next = None

def  str_ (self):
return str(self.data)

L = Node(“a’)
L.next = Node(123)




Stacks

How do we remove this limitation? In Python, we developed

linked data structures that could “declare” new storage. What
about in Java?

class Node({
private int data;
private Node next;

public Node (int d) {
data d;

next TNl

}

publ i¢ SStrangs oS trine (B 1
return Integer.toString(data);

}
)

L = new Node (1) ;
L.next = new Node (123) ;




Array-Based Stack vs. DynamicStack

public class ArrayStack {
final static int DEFAULT_CAPACITY=560;
private int[] S;
private int top;

public ArrayStack(){
this (DEFAULT_CAPACITY);

}

public ArrayStack(int capacity){
S = new int[capacity];
top=-1;

¥

public void push(int x){
S[++top]=x;
}

public int pop(){
if(top>=0)
return S[top--];
else
throw new RuntimeException("Stack is empty.");

}
}

public class Tester{

public static void main(Strinel1 ares) {
ArrayStack stack = new ArrayStack();
stack.push(5);

System.out.println("popped: "+stack.pop());

}
}

public class DynamicStack implements Stack{

private class StackNode {
private int data;
private StackNode next;

public StackNode(int d){
data = d;
next=null;
}
¥

private StackNode top = null;

public void push(int x) {
StackNode temp = new StackNode(x);
temp.next = top;
top = temp;

}

public int pop(){
if (top == null)
throw new RuntimeException("Stack empty!");

int x = top.data;
top = top.next;
return Xx;

}

}

If we change ArrayStack to
DynamicStack, the code still works.




Java Interfaces

 We can specify that a Java class implements a particular kind
of functionality defined as an Interface.

}

public interface Stack {
public int pop();
public void push(int x);
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public class ArrayStack implements Stack {

public class DynamicStack implements Stack {

public class Tester {

public static void main(String[] args) {
Stack stack = new ArrayStack()
stack.push(5);
System.out.println("popped: "+stack.pop());

}
¥

If we change ArrayStack to
DynamicStack, the code still works.




