
Data Structures and
Object-Oriented Design

II
Spring 2014

Carola Wenk

Stacks
• Are the methods in this class guaranteed to work? What kind

of specifications can we guarantee to ensure the correctness
of push and pop?

• How does pop handle empty stacks?

public int pop() {
return S[top--];

} public int pop() {
if (top >= 0)
return S[top--];

}

public int pop() {
if (top >= 0)
return S[top--];

else
return -999;

}

public int pop() {
if (top >= 0)
return S[top--];

else
throw new RuntimeException(“Stack is empty”);

}

Software Can Kill
• Meeting specifications is of critical importance when software is

used to control dangerous hardware.

The Therac-25 relied on a software system to deliver different kinds
of radiation: electron beam therapy, and X-ray therapy. These two
types of radiation are used to treat different types of cancer.

Software Can Kill

True False

False
False

Specification

The Therac-25 radiation therapy system needed to guarantee that a
shield is always in place when in “X-ray” mode. In certain instances
the specification was not met, and as a result patients received 100x
the allowable amount of radiation.

Meeting specifications is of critical importance when software is used
to control dangerous hardware.

Software Can Kill

True False

False
False

Specification

An investigative commission found that the Therac-25 failed due to
poor software development practices that led to a system that was
difficult to verify or test.

Meeting specifications is of critical importance when software is used
to control dangerous hardware.

Stack “Buffer Exploits”

Nearly every operating system utilizes a stack to manage the
function calls. Programs can exploit the lack of a stack buffer
check to modify the operating system and execute arbitrary code!

[wikipedia]

Java Runtime System
import --;

class HelloWorld {
public void f(int x1, char x2, ...) {
...
}

public long g(boolean y1, float y2, ...) {
...
}

private int h(double z1, int z2, ...) {
...
}

public static void main(String [] args) {
System.out.println(“hello world!”)
System.out.println(“goodbye world!”)

}
}

Java Compiler

Java “Byte”
Code

Operating System

To CPU
Java Virtual

Machine

Recent “zero-day” exploits (compromising Facebook, Twitter,
Apple) utilize Java applets to circumvent OS security and install
malware.

Operating System

Java Virtual Machine

Java “Byte”
Code

Recent “zero-day” exploits involving Java hide malicious code in
Java applets that can circumvent built-in security provisions to
install malware.

privileged access

Limitations of Arrays
• One limitation of our implementation is that we have a set

capacity for our storage.

“Push” “Pop”
class Stack {

...

public Stack(..) {
...

}

public int pop() {
...

}

public void push(int x) {
...

}

Stacks
How do we remove this limitation? In Python, we developed
linked data structures that could “declare” new storage. What
about in Java?

class Node:
def __init__(self, data = None, next = None):
self.data = data
self.next = None

def __str__(self):
return str(self.data)

L = Node(‘a’)
L.next = Node(123)

‘a’L: 123

Stacks

class Node{
private int data;
private Node next;

public Node(int d){
data = d;
next = null;

}

public String toString() {
return Integer.toString(data);

}
}

1L: 123

How do we remove this limitation? In Python, we developed
linked data structures that could “declare” new storage. What
about in Java?

L = new Node(1);
L.next = new Node(123);

Array-Based Stack vs. DynamicStack
public class DynamicStack implements Stack{

private class StackNode {
private int data;
private StackNode next;

public StackNode(int d){
data = d;
next=null;

}
}

private StackNode top = null;

public void push(int x) {
StackNode temp = new StackNode(x);
temp.next = top;
top = temp;

}

public int pop(){
if (top == null)
throw new RuntimeException("Stack empty!");

int x = top.data;
top = top.next;
return x;

}
}

public class ArrayStack {
final static int DEFAULT_CAPACITY=50;
private int[] S;
private int top;

public ArrayStack(){
this(DEFAULT_CAPACITY);

}

public ArrayStack(int capacity){
S = new int[capacity];
top=‐1;

}

public void push(int x){
S[++top]=x;

}

public int pop(){
if(top>=0)
return S[top‐‐];

else
throw new RuntimeException("Stack is empty.");

}
}

public class Tester{
public static void main(String[] args) {
ArrayStack stack = new ArrayStack();
stack.push(5);
System.out.println("popped: "+stack.pop());

}
}

If we change ArrayStack to
DynamicStack, the code still works.

Java Interfaces
• We can specify that a Java class implements a particular kind

of functionality defined as an interface.
public interface Stack {
public int pop();
public void push(int x);

}

public class ArrayStack implements Stack {

...

}

public class Tester {
public static void main(String[] args) {
Stack stack = new ArrayStack();
stack.push(5);
System.out.println("popped: "+stack.pop());

}
}

public class DynamicStack implements Stack {

...

}

If we change ArrayStack to
DynamicStack, the code still works.

