
C and C++
IV

Spring 2014
Carola Wenk



C and C++
• The C language was originally developed in the 1970s to 

assist in the implementation of the UNIX operating system. It 
was designed to be one step above machine language.

• C++ is a superset of C introduced in the early 1980s to add 
objected-oriented features to C.

#include <stdio.h>

int main() {
printf("Hello World!!");
return 0;

}

#include <iostream>
using namespace std;

int main() {
cout << "!!!Hello World!!!" << endl; 
return 0;

}

Hello World in C: Hello World in C++:



C Program Structure
#include <stdio.h>

void foo(int x) {
printf(“x is %d\n”, x);

}

int main() {
printf(“Hello World!\n”);
return 0;

}

function declaration

sequence of statements

Syntax in C/C++ is very similar to Java, for historical reasons. 

However, not everything is an object, and programs are 
initiated from a main function.



C++ Program Structure
#include <iostream>

using namespace std;

void foo(int x) {
cout << “x is “ << x << endl;

}

int main() {
cout << “Hello World!” << endl;
return 0;

}

function declaration

sequence of statements

C is older than C++, and is somewhat more low-level, with 
different input/output syntax, and no facility to define classes.

C++ is a superset of C, with the ability to define classes.



Namespaces

Namespaces are the analog of packages, and provide scope for 
library methods. The namespace std is where cout and cin
“live”. 

#include <iostream>

using namespace std;

void foo(int x) {
cout << “x is “ << x << endl;

}

int main() {
cout << “Hello World!” << endl;
return 0;

}



Namespaces

Namespaces are the analog of packages, and provide scope for 
library methods. The namespace std is where cout and cin
“live”. 

#include <iostream>

void foo(int x) {
std::cout << “x is “ << x << std::endl;

}

int main() {
std::cout << “Hello World!” << std::endl;
return 0;

}



Namespaces
#include <iostream>
using namespace std;

namespace cmps1600 {
int sleep(){
return 8;

}
}

namespace summer {
int sleep(){
return 12;

}
}

int main() {
cout << “I sleep “ << cmps1600::sleep() << “ hrs. during the semester.” 

<< endl;

cout << “I sleep “ << summer::sleep() << “ during summer.” << endl;
}



Namespaces
#include <iostream>
using namespace std;

namespace cmps1600 {
int sleep(){
return 8;

}
}

namespace summer {
int sleep(){
return 12;

}
}

int main() {
using namespace cmps1600;
cout << “I sleep “ << sleep() << “ hrs. during the semester.” 

<< endl;

cout << “I sleep “ << summer:: sleep() << “ during summer.” << endl;
}



Namespaces
#include <iostream>
using namespace std;

namespace cmps1600 {
int sleep(){
return 8;

}
}

namespace summer {
int sleep(){
return 12;

}
}

int main() {
{ using namespace cmps1600;
cout << “I sleep “ << sleep() << “ hrs. during the semester.” 

<< endl;
}

{ using namespace summer;
cout << “I sleep “ << sleep() << “ during summer.” << endl;

}
}



[October 1984]



C++
• Motivation (1980’s): C is great, and everyone uses it, so let’s 

add a bunch of features to it.

C++

C
Primitive Types

User Memory Management

Arrays, structs

Classes, inheritance 
Type polymorphism

Slightly easier memory management
Generic types



Object-Oriented Design
The first object-oriented language was Simula 67; it 
introduced objects, classes, virtual functions, and garbage 
collection.

One of the main goals of Simula was to enable complex 
discrete event simulations - an event could be defined as a 
class.

There are a numerous “pure” and non-pure object-oriented 
languages: Smalltalk, Eiffel, Scala, Oberon, Java, C#, 
Objective C, etc.

Generally speaking, object-oriented design enforces “good 
habits” of programming large-scale software systems, by 
localizing functionality.



C++ Class Definitions

With the exception of defining a wrapper class, there are only minor 
differences between Java and C++ class definitions.

#include <iostream>
using namespace std;

class Square{
double side;

public:
Square(double s){ 

side = s;
}
double area(){

return side*side; 
}
double perimeter(){ 

return 4*side; 
}

}; 

int main(){
Square* A = new Square(2.0);
Square B(3.0);
cout << “A->area()==“ << A->area() << endl;
cout << “B.area()==“ << B.area() << endl; 

}

private by default

“sections” for 
access modifiers

instantiation is 
different



C++ Class Definitions
#include <iostream>
using namespace std;

class Square{
double side;

public:
Square(double s){ 

side = s;
}
double area(){

return side*side; 
}
double perimeter(){ 

return 4*side; 
}

}; 

int main(){
Square* A = new Square(2.0);
Square B(3.0);
cout << “A->area()==“ << A->area() << endl;
cout << “B.area()==“ << B.area() << endl; 

}

private by default

instantiation is 
different

“sections” for 
access modifiers 

(public, 
private, 
protected)

Notice that references (to objects) are really just pointers as in C. 
Java hides this distinction for ease of use.



C++ Class Definitions
#include <iostream>
using namespace std;

class Square{
double side;

public:
Square(double s);
double area();
double perimeter(){ 

return 4*side; 
}

};

Square::Square(double s){
this.side = s;

}
double Square::area(){

return side*side;
}

int main(){
Square* A = new Square(2.0);
Square B(3.0);
cout << “A->area()==“ << A->area() << endl;
cout << “B.area()==“ << B.area() << endl; 

}

Can declare 
members outside 

of class 
declaration

Using appropriate “scope” specifiers, we can declare class methods anywhere.



C++ Class Definitions

#include <iostream>
#include “Square.h”
using namespace std;

int main() {
Square* A = new Square(2.0);
cout << “A->area()==“ << A->area() << endl; 

}

#ifndef SQUARE_H
#define SQUARE_H
class Square{

double side;
public:

Square(double s);
double area();
double perimeter();

};
#endif

#include “Square.h”
Square::Square(double s){

side = s; 
}

double Square::area(){
return side*side;

}

double Square::perimeter(){
return 4*side;

}main.cpp

Square.h Square.cpp

Split the class definition into header file and source file, and use the class 
in another source file.

Searches in same 
directory as .cpp file.

Searches in some 
implementation-
dependent path.



C++ Class Definitions

#include <iostream>
#include “Square.h”
using namespace std;

int main() {
Square* A = new Square(2.0);
cout << “A->area()=“ << A->area() << endl;
cout << “A->count()=“ << A->count() << endl; 

}

#ifndef SQUARE_H
#define SQUARE_H
class Square{

double side;
static int c;

public:
Square(double s);
double area();
double perimeter();
int count();

};
#endif

#include “Square.h”
int Square::c=0;
Square::Square(double s){

side = s; 
c++;

}
double Square::area(){

return side*side;
}
double Square::perimeter(){

return 4*side;
}
int Square::count(){

return c;
}

main.cpp

Square.h Square.cpp

Static members behave the same as in Java.



Constructors and Destructors

class Buffer {
int* storage;

public:
Buffer(int capacity) {

storage = new int[capacity];
}

...

~Buffer(){
delete []storage;

}
};

Recall that we have to manage allocation and deallocation of data 
structures: Every class can declare a “destructor” to specify how 
each instance can free the memory that it has allocated. 


