C and C++
1\

Spring 2014
Carola Wenk



C and C++

« The C language was originally developed in the 1970s to
assist in the implementation of the UNIX operating system. It
was designed to be one step above machine language.

« C++is asuperset of C introduced in the early 1980s to add
objected-oriented features to C.

Hello World Iin C: Hello World in C++;

#include <stdio.h> #include <iostream>
using namespace std;
int main() { _ _
printf("Hello World!!"); int main() {

T cout << "llHello World!!" << endlI;
} return O;

}




C Program Structure

Hinclude <stdio.h>

void foo(int x) {

printf(*x is %d\n”, x); — function declaration

b

int main() { 4
printf(“Hello World!\n™);

5 return O; — sequence of statements

Syntax in C/C++ is very similar to Java, for historical reasons.

However, not everything is an object, and programs are
Initiated from a main function.



C++ Program Structure

Hinclude <iostream>
using namespace std;

void foo(int x) { 3

cout << “X IS “ << X << endl; _ _
1 — function declaration

int main() { Kl
cout << “Hello World!” << endl;

return O; — sequence of statements

}

C is older than C++, and is somewhat more low-level, with
different input/output syntax, and no faclility to define classes.

C++ Is a superset of C, with the ability to define classes.



Namespaces

Hinclude <iostream>

B

id foo(int x) {
e EVER Y- Iu LM ) e

s
1

sommmmn

Namespaces are the analog of packages, and provide scope for
library methods. The namespace std is where cout and cin
“live”.



Hinclude <iostream>

=
S
-

\
\
X
\
\%

IS (13

.
3
=
-
[
[

-

j O B
<< (41

in

d foo

|
|
: |
: | =
= e
A e
e e
1 a2 |
e [
xa i
b

int main() {

VO I

B

Namespaces

return O

Namespaces are the analog of packages, and provide scope for

library methods. The namespace std is where cout and cin

“live”.



Namespaces

#include <iostream>
using namespace std;

namespace cmpsl1l600 {
int sleep(){
return 8;

}
¥

namespace summer {
int sleep(){
return 12;

}
I}

int main() {
cout << “I sleep “ <<
<< endl;

sleep() << *“ hrs. during the semester.”

cout << “I sleep “ << sleep() << * during summer.” << endl;

}




Namespaces

#include <iostream>
using namespace std;

namespace cmpsl1l600 {

int sleep(){
return 8;
}

}

namespace summer {
int sleep(){
return 12;

<< endl;

cout << “I sleep “ << sleep() << “ during summer.” << endl;

}




Namespaces

#include <iostream>
using namespace std

namespace cmpsl1l600 {

int sleep(){
return 8

namespace summer {

int sleep(){
return 12

.
. = L
= xaxa%A

!

_ using | B
7 sy “I sleep “ << sleep() << “ hrs. during the semester.

<< endl

s -
2= -
Bl o

T ::zif i
ﬁi = z 5

e -
i -

.

L i

<< sleep() << * during summer.” << endl

-
-

-

xw,
-
-
-
-

)
b

-




The C+ + Programming Language — Reference Manual

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

C++ is C extended with classes, inline functions, operator overloading,
function name overloading, constant types, references, free store management,
function argument checking, and a new function definition syntax. This manual
was derived from the Unix System V C reference manual, and the general organi-
zation and section numbering have been preserved whereever possible. The differ-
ences between C++ and C are summarized. Except for details like introduction
of new keywords, C++ is a superset of C. An index and a table of contents are
also provided. For a more readable presentation of most of the new features see

Bjarne Stroustrup: “A C++ Tutorial’’. or
Bjarne Stroustrup: '‘The C+ <+ Programming Language - Reference Manual’’,

Both in this volume.
[October 1984]



C++

« Motivation (1980’s): C is great, and everyone uses it, so let’s
add a bunch of features to it.




Object-Oriented Design

The first object-oriented language was Simula 67; it
Introduced objects, classes, virtual functions, and garbage
collection.

One of the main goals of Simula was to enable complex
discrete event simulations - an event could be defined as a
class.

There are a numerous “pure” and non-pure object-oriented
languages: Smalltalk, Eiffel, Scala, Oberon, Java, C#,
Objective C, etc.

Generally speaking, object-oriented design enforces “good
habits” of programming large-scale software systems, by
localizing functionality.



C++ Class Definitions

#include <iostream>
using namespace std;

class Square{

private by default double side;
public:
//// Square(double s){
“sections” for y S n
access modifiers double area(Q{

return side*side;
ks
double perimeter(){
return 4*side;

}

: 1A }:
Instantiation IS
different Jint main({
™~ Square* A = new Square(2.0);
Square B(3.0);
cout << “A->area()==" << A->area() << endl;
cout << “B.area()==" << B.area() << endl;

t

With the exception of defining a wrapper class, there are only minor
differences between Java and C++ class definitions.




C++ Class Definitions

#include <iostream>
using namespace std;

class Square{

private by default double side;
public:
//// Square(double s){
“sections” for 3 H ey
access modifiers double area(){
(public, return side*side;
: by
private, double perimeter(){
protected) return 4*side;
+

: 1A }:
Instantiation IS
different Jint main({
™~ Square* A = new Square(2.0);
Square B(3.0);
cout << “A->area()==" << A->area() << endl;
cout << “B.area()==" << B.area() << endl;

t

Notice that references (to objects) are really just pointers as in C.
Java hides this distinction for ease of use.



C++ Class Definitions

#include <iostream>
using namespace std;

class Square{
double side;
public:
Square(double s);
double area();
double perimeter(){
return 4*side;

+
}:
Can declare
members outside Squal_'e: :§quare(double s){
this.side = s;
of class L
declaration double Square::area(){

return side*side;

b

int main(){
Square* A = new Square(2.0);
Square B(3.0);
cout << “A->area()==" << A->area() << endl;
cout << “B.area()==* << B.area() << endl;

b
Using appropriate “scope” specifiers, we can declare class methods anywhere.




C++ Class Definitions

Square.h Square.cpp
#i1ftndef SQUARE H #include “Square.h”
#define SQUARE_H Square: :Square(double s){
Iclass Square{ side = s;
double side; }+
jpublic:
Square(double s); double Square::area(){
double area(); return side*side;
double perimeter(); }
}:
Hendi T double Square: :perimeter(){
return 4*side;
}

(Searches in some Lmaj_]_’l { Cpp

k$$§$§m%§¥ #include <iostream>
#include “Square.h”

( -
Searches in same using namespace std;
| directory as .cpp file.

int main() {
Square* A = new Square(2.0);
cout << “A->area()==" << A->area() << endl;

b

Split the class definition into header file and source file, and use the class
In another source file.



C++ Class Definitions

Square.h Square.cpp
H#ifndef SQUARE_H #include “Square.h”
#define SQUARE H [ oot
Iclass Square{ Square: :Square(double s){
double side; side = s;
h
Square(double s); double Square::area(){
double area(); return side*side;
double perimeter(); }
) double Square: :perimeter(){
}; return 4*side;
Hendi T }
Int Squar ount({
return c
maln.cpp :

#include <iostream>
#include “Square.h”
lusing namespace std;

int main() {
Square* A = new Square(2.0);
cout << “A->area()=* << A->area() << endl;
cout << “A->count()=" << A->count() << endl;

h

Static members behave the same as in Java.



Constructors and Destructors

iclass Buffer {
Int* storage;

public:
Buffer(int capacity) {
storage = new intf[capacity];

}

~Buffer(){
delete []storage;

}
}:

Recall that we have to manage allocation and deallocation of data
structures: Every class can declare a “destructor” to specify how
each instance can free the memory that it has allocated.



