
C and C++
II

Spring 2014
Carola Wenk

C and C++
• The C language was originally developed in the 1970s to

assist in the implementation of the UNIX operating system. It
was designed to be one step above machine language.

• C++ is a superset of C introduced in the early 1980s to add
objected-oriented features to C.

• C is said to be “weakly typed” because there are virtually no
compatibility rules between variables of different types.

• What does a “weakly typed” language look like? How do we
manage variables and storage?

Types in C
• Primitive types (int, long, float, double, char) can

be declared in C; the compiler provides some default
compatibility.

0
1
2
3
4
5
6
7
...

Memory

8 Bits (= 1 Byte)

char

short

int, float
long, double

Types in C
• Variables can be “packaged” using struct:

#include <stdio.h>

struct my_stuff {
int a;
int b;
int c;

};

int main() {
struct my_stuff m;
m.a = 1; m.b = 2; m.c = 3;
return 0;

}

Types in C
• Arrays of a primitive type can be declared, as well as arrays

of structs.

#include <stdio.h>

struct my_stuff {
int a;
int b;
int c;

};

int main() {
int x[5] = {1, 5, 10, 11, 12};

struct my_stuff m[25];
m[0].a = 1; m[0].b = 2; m[0].c = 3;

return 0;
}

Types in C
• While strings in Java and Python were abstract types, strings

in C are implemented as character arrays:

#include <stdio.h>

int main() {
char s[25];
printf(“Enter a string:”);
fgets(s, 25, stdin);
printf(“\nYou entered: %s\n”, s);

return 0;
}

Types in C
• In general, arrays in C are much like Java, except that the

length field does not exist.

• The syntax for declaring arrays is also slightly different since
the brackets are placed after the variable name.

#include <stdio.h>

void foo(int A[], int n) {
...

}

int main() {
int X[25];

foo(X, 25);
...

}

Pointers and Addresses
• So far we talked about primitive types (char, int, double)

and arrays of them.

• Does C have a concept similar to Java references?

• What would we want to use those for?

 Linked structures; pass changeable parameters into functions

Program Stack
Each program (process) has a full virtual address space.
A typical organization of the stack is as follows:
• The heap begins at low addresses and grows upward
• The stack begins at high addresses and grows downward

text

data

heap

stack

0x0000000000000000

0xFFFFFFFFFFFFFFFF

Stores local variables that exist only within a
scope. They are automatically allocated and
deallocated by the compiler on the stack.
 Example: Function calls.

Stores the instructions of the program.

Global variables exist for the entire execution
and are allocated in the data segment. They
are initialized at program startup, and
deallocated at program end.

Dynamically allocated memory is explicitly
allocated (malloc) on the heap and
deallocated (free) by the programmer.

Pointers and Addresses

• A pointer is a new kind of variable that,
instead of storing a normal value, stores
an address in memory.
 A pointer is often initialized with the address operator

(&)
 A pointer points to (or refers to) the storage location

of another variable.
 A pointer is declared using * .
 The value a pointer points to can be changed using

the dereference operator (*)

int a=20;
printf(“%d\n”,&a);

int* x = &a;
*x = 33;

Indexing/Offsetting Arrays and Pointers

• An array is a way to associate multiple items
with the same name. It represents a block of
variables of the same type.

• Individual variables are accessed using an index
(also called offset). E.g., A[2]

• Note that in C, the syntax for declaring an array
variable and for indexing an array are
decievingly similar.

int A[4]={0,1,2,3};
A[2]=57;
/* A is now {0,1,57,3}*/
printf(“A[2]=%d\n”,A[2]);

• Pointers can be offset just like arrays can. int A[4]={0,1,2,3};
int* p = &A[0];
p=p+2;
*p = 57;
/* A is now {0,1,57,3}*/
printf(“A[2]=%d\n”,A[2]);
printf(“*(p+3)=%d\n”,*(p+3);

Doing Crazy Things with Pointers

• Pointers can point to any place in memory
• One can do a lot of crazy things with offsetting

pointers
 Side-effects that are hard to predict
 Buffer overflow attacks…

int i=0;
int j=1;
int k=2;
int* jp=&j;
jp[1]=57;
*(jp+2)=-32;

Dynamic Memory Allocation

• In C we have to declare arrays with a fixed size:
• But what if we want to have dynamic arrays that might

change their size during the course of the program?
 In Java we just declared an array without a size:

int A[4];

int *A;

A = malloc(4*sizeof(int));
/* Allocated A[0..3] */
A[2]=57;
*(A+1)=42;
free(A);

int[] A;

• In C we can use pointers instead:
• But then we have to allocate the memory

by hand:
• This allocates dynamic memory on the

heap
• In the end, dynamic memory needs to be

released back to the system.

 Arrays are simply pointers that have space already allocated for us
by the compiler, and that can’t change what they point to.

Strings

• Strings are character arrays that are null-terminated
• The last character is a ‘\0’ which really is 0
• This indicates the end of the string, which is necessary for

printing strings…

char *word = “hello”;
char anotherWord[8]={‘h’,’e’,’l’,’l’,’o’,’\0’,0,0};
printf(“word=%s\n”,word);
printf(anotherWord=%s\n”,anotherWord);

