
C and C++
I

Spring 2014
Carola Wenk

Different Languages
sum = 0
i = 1
while (i <= n):
sum += i
i += 2

Python
Python

Interpreter

Java/C++ Compiler

lw $t0, 1
lw $t1,0
lw $t2, n
loop:
beq $t0,$t2,done
add $t0, $t1, $t1
add $t0, 2
jmp loop
done:

Scheme
Interpreter

int sum = 0;
for (int i = 1; i <= n; i +=2) {
sum += i;

}

Java/C++

Scheme
(define (sum n)
(if (= n 0) 0

(+ n (sum n-1))))

Languages are translated to machine code by either by a
compiler or interpreter.

int sum = 0;
int i;
for (i = 1; i <= n; i +=2) {
sum += i

}

C
C Compiler

Categories and Uses
• Imperative

Python: Interpreted, Easy to prototype ideas
Java : Interpreted/Compiled, Platform-independent
C/C++: Compiled, General purpose
PHP: Interpreted/Compiled, Web scripting

• Functional
LISP/Scheme: Interpreted, no differentiation between
data/instructions

Languages are translated to machine code by either by a
compiler or interpreter.

C and C++
• The C language was originally developed in the 1970s to

assist in the implementation of the UNIX operating system. It
was designed to be one step above machine language.

• C++ is a superset of C introduced in the early 1980s to add
objected-oriented features to C.

#include <stdio.h>

int main() {
printf("Hello World!!");
return 0;

}

#include <iostream>
using namespace std;

int main() {
cout << "!!!Hello World!!!" << endl;
return 0;

}

Hello World in C: Hello World in C++:

Variables and Types
• Although Python doesn’t care about types, they exist:

numbers, strings, and lists.

• C and C++ have the same primitive types as Java:
int/short/long, float/double, boolean, char.

• A variable name is simply a placeholder for a memory
address.

0
1
2
3
4
5
6
7
...

Memory

8 Bits (= 1 Byte)

boolean/char

short

int, float

long, double

Conditionals
if <condition>:

<block of statements>
elif <condition>:

<block of statements>
else:

<block of statements>

Python

if (<condition>) {
<block of statements>
}
else if (<condition>){
<block of statements>
}
else {
<block of statements>
}

Java/C/C++

For conditional statements,
the only real difference in
syntax between Python and
Java/C/C++ has to do with
scope declaration.

Java/C/C++ use braces to
delimit blocks of
statements, instead of
indentation.

Also, in Java/C/C++ the
condition has to be
enclosed in parentheses.

Looping
for i in <list>:

<block of statements>

while (<condition>):
<block of statements>

Python

for (<init>; <condition>; <increment>) {
<block of statements>
}

while (<condition>) {
<block of statments>
}

do {
<block of statements>
} while (<condition>);

Java/C/C++

Again, looping constructs
are fairly similar, except for
how scope is defined.

Java/C/C++ also have a
“do-while” construct that
can be convenient at times.

C++

#include <iostream>

using namespace std;

int main() {
cout << “Hello World!” << endl;
return 0;

}

One key difference between Java and C/C++ is that not
everything is (necessarily) object. So C/C++ program flow is
Python-like.

Python Program Structure

A Python script is a sequence of function declarations followed by a
sequence of statements.

A function is just a way to reuse useful blocks of statements.

def f(a, b):
print “this is function f”
return a+b;

x = 1; y = 2; evens = 0; odds = []
print f(1, 2)
print f('z', f('a', 'b'))for i in
range(1,10):

if (i % 2 == 0):
evens += i

else:
odds.append(i)

print evens; print sum(odds)

function declaration

sequence of statements

C++ Program Structure
#include <iostream>

using namespace std;

void foo(int x) {
cout << “x is “ << x << endl;

}

int main() {
cout << “Hello World!” << endl;
return 0;

}

Syntax in C/C++ is very similar to Java, for historical reasons.

However, not everything is an object, and programs are
initiated from a main function.

function declaration

sequence of statements

C Program Structure
#include <stdio.h>

void foo(int x) {
printf(“x is %d\n”, x);

}

int main() {
printf(“Hello World!\n”);
return 0;

}

C is older than C++, and is somewhat more low-level, with
different input/output syntax, and no facility to define classes.

function declaration

sequence of statements

Python
Interpreted languages operate in an environment that provides
some language features “under the hood”.

Interpreter

Program

Statements

Machine
Instructions

Operating
System

To CPU

Parse statements
Resolve ambiguities
Report errors
Manage memory

Java Runtime System
import --;

class HelloWorld {
public void f(int x1, char x2, ...) {
...
}

public long g(boolean y1, float y2, ...) {
...
}

private int h(double z1, int z2, ...) {
...
}

public static void main() {
System.out.println(“hello world!”)
System.out.println(“goodbye world!”)

}
}

Java Compiler

Java “Byte”
Code

Operating System

To CPU
Java Virtual

Machine

Pretty Good Safety Net

C/C++
Compiled languages operate in a self-contained environment,
and generally do not have a “safety net.”

Compiler

Program

Statements

Operating
System

To CPU

Parse statements
Resolve ambiguities
Report static errors
Manage memory

Machine
Code

C

#include <stdio.h>

int main() {
printf("Hello World!!");
return 0;

}

C Compiler

Machine
Language

Operating System

To CPU

Absolutely No Safety Net

C++

#include <iostream>
using namespace std;

int main() {
cout << "!!!Hello World!!!" << endl;
return 0;

}

C++ Compiler

Machine
Language

Operating System

To CPU

Absolutely No Safety Net

