
CMPS 1600 Introduction to Computer Science II – Spring 14

3/27/14

8. Homework
Programming portion due Thursday 4/3/14 at 11:55pm on Blackboard.

Please submit one .cpp file on Blackboard.
In order to receive any credit for the programming portions, you are required
to thoroughly comment and test your code.

1. Public Key Cryptography (20 points)
If you want to send a message via a non-secure channel, you may want to encrypt
your message such that an eavesdropper cannot easily listen in on your
communication. This is particularly important in transactions conducted over the
internet, such as banking or shopping. An encryption method that has already been
used in Roman times is the shift cipher: Consider a string that you want to encrypt,
say the word “Hello”. Look up the ASCII code for each character, this gives the
sequence 72 101 108 108 111. Then shift each character-code by a fixed number, and
consider this to be the encrypted message. For a shift of 5 this would yield
77 106 113 113 116 or as a string “Mjqqt”. Now one can send the encrypted message
“Mjqqt” over an insecure channel, and any eavesdropper will have a hard time
reading the message. Decoding is of course done by shifting each character by −5.
But somehow, the shift amount of 5 also needs to be sent to the receiver of the
message as well.

Shift ciphers are in general not very secure, but let’s not worry about that right
now. We can make them a little more secure by encrypting the shift amount itself
with something called public-key cryptography. You’ve probably heard of RSA;
that’s a public-key cryptography system that is based on the fact that factorizing
large primes is hard. We are going to implement a simple version of RSA in this
homework assignment.

Download the file hw8.cpp and add C++ code to it to address the following
questions. Split the function and class declarations from the implementations.

(a) (5 points) Let’s start with a simple shift cipher. Implement and test a function
char* shiftString(int shift, char* input) that takes as input a shift
amount and an input string, and that returns a (pointer to) a result string.
The storage for the result string has to be allocated inside the function. The
result string should consist of the characters in the input string each shifted by
shift. Since some of the ASCII characters are special characters that don’t
print well, we are going to limit ourselves to characters with ASCII codes
between 32 and 126, and the shift will be performed cyclically. A function char

shiftChar(int shift, char c) that shifts a single character has been
provided. Remember, strings in C/C++ end with the ’\0’ character.

What does “Hello World” look like when it is shifted by 10? And can you shift
the result back by −10 and obtain “Hello World”?

Flip over to back page =⇒

(b) (15 points) In RSA cryptography, every user has a public key (consisting of two
numbers e and n) and a private key (consisting of two numbers d and n). The
public key is stored in a public database which is accessible to everyone; similar
to the notion of a phone book. Every user also has a secret private key that
nobody else knows. A message is simply a positive integer (it will be the shift
amount a, in our case).

Let’s say the message is the shift amount a. Then the encrypted shift amount
is ae mod n; note that we only needed to know a and the public key (e, n) for
the encryption. Decryption of a “mangled” shift amount b is done by
computing bd mod n; note we used the private key (d, n) for that. So, if you
want to send a message to a user “Alice”, then you just look up Alice’s public
key, encrypt the message, and send it to her. Alice is the only one who can
decrypt the message with her secret private key.

We will combine RSA with the shift cipher as follows: For an input message
“Hello” and the (arbitrarily picked) shift amount 5, we will send the message
“Mjqqt” to Alice together with the encrypted shift amount (which might be 85
for example).

• Implement a class User that stores the private key (d, n). In its
constructor it should use the provided function next n e d(int* n, int*

e, int* d) to initialize the public and private keys for this user, and then
store the public key in PublicKeyDB. It should contain a private method
int decryptNumber(int shift encrypted) which takes an encrypted
shift amount as input, and uses the provided function pow mod to decrypt
the amount. It should also contain a function void receiveMessage(int

shift encrypted, char* shifted message), which decrypts the shift
amount and shifts the shifted message back by the negation of the shift
amount. This particular function should print out status updates of the
decryption of the message and print the cleartext.

• Implement a class PublicKeyDB that serves as a lookup-table for the public
keys. It should be able to store for each user the public keys e and n as
well as the address of the User object; you can use a struct or a class to
group these three together and store them in an array. PublicKeyDB
should have a constructor that initializes this container class, a
setKey(...) method that takes the public key e and n as well as the
address of the User, and stores them together in the array. There should
also be a private method getPublicKey(User *user) that returns the
public key (e, n) for a given User address. Finally, there should be a
method int encryptNumber(User* recipient, int shift) that looks
up the public key for a user and returns the encrypted shift amount.

• In the main function, perform the following tests: Create at least two User

objects “Alice” and “Bob”. Then pick some message and some shift
amount, encrypt them for Alice and send this meta message to her (using
her receiveMessage method), and see if she can decrypt it. Pick a second
message and a second shift amount, encrypt it and send it to Bob, and see
if he can decrypt it. Can Alice decrypt the message that was meant for
Bob?

• In the main method, declare Alice as the very first User object. Can Alice
decrypt the message

^ro*~o}~*q|kno}*k|o*oxmynon*sx*K]MSS8

with encrypted shift amount 60?

