
CMPS 1600 Introduction to Computer Science II – Spring 14

11/24/14

2. Homework
Programming portion (problems 2 and 3(a)) due Tuesday 2/4/14 at 11:55pm on

Blackboard.
Written portion (problems 1 and 3(b)) due Wednesday 2/5/14 at the beginning of

class.

Please zip the (Eclipse) project directory for this homework, and use the following
naming convention for the name of the project (and directory):
lastName firstName hw2. In order to receive any credit for the programming
portions, you are required to thoroughly comment and test your code.

1. Stack specification (5 points)
Consider the push method in the array-based Stack class that we have covered
in class.

(a) (1 point) In words, what is the desired functionality of this method? Make
sure to take the limited capacity of the stack into account.

(b) (1 point) On paper, provide modified Java code for the push method that
provides the desired functionality from part (a). Your method should throw
an exception to handle capacity limitations.

(c) (2 point) Please give the input specification and output specification for the
push method from part (b). Use logical formulas as well as
pictures/diagrams to explain your specifications.

(d) (1 point) Now consider the DynamicStack class that implements a stack
using a linked list. How do the input and output specifications for the push

and pop methods change, if at all? Justify your answer.

2. Dynamic Array (7 points)
We would like to implement an array-like data structure that automatically
grows in size as necessary. For simplicity, it will store String objects for now.
Such a dynamic array should have the following functionality:

• There should be a method set(i, s) that stores the String s at index i.
Just as in an array, indices should start at 0.

• There should be a method get(i) that returns the String stored at index i,
or null if nothing has been stored at index i.

• The toString() method should be implemented, to return a String
representation of the whole data structure for test purposes.

Implement a class DynamicArray that internally uses an array to implement the
desired functionality.

• Use a DEFAULT CAPACITY to allocate an initial array of String objects.

• The method set(i,s) should store the String s physically at position i in
your array, and if the capacity of the array is too small, then the array
should be resized to double its size.

Flip over to back page =⇒



• In order to resize the array, you need to allocate a new array of double the
size, and copy the previous array values over. You could write a private
method to do that.

• Note that Java initializes the array values with null. So, if no String has
been stored at a particular index i in the array yet, then the value will be
null by default.

• Annotate your methods with their worst-case runtimes.

3. Queue from Two Stacks (8 points)
A first-in first-out (FIFO) queue supports the following functionality:
enqueue(x) adds element x to the end of the queue; dequeue() returns the
element from the front of the queue. You will implement a QueueFromStacks

class that implements the queue functionality using two stacks.

(a) (6 points) A queue can be implemented using two stacks stackA and
stackB as follows: In order to enqueue an item, push it onto stackA. In
order to dequeue an item, pop the top item from stackB; but if stackB is
empty, first pop all elements from stackA and push them onto stackB, and
afterwards pop the top item from stackB.

Implement a QueueFromStacks class that uses two stacks to implement the
enqueue and dequeue methods of a queue of integers this way. For this, use
either the array-based stack class or the linked list-based stack class that we
implemented in class. You will need the push and pop methods, and an
additional isEmpty() method that returns true if the stack is empty; please
add the isEmpty() method to the stack class that you use. Do not use any
other container data structure than the two stacks.

Annotate your methods with their runtimes.

(b) (2 points) Can you explain why the implementation of the queue
functionality as described in (a) is correct? Why do the two stacks together
correctly implement the first-in first-out functionality of a queue?

It might help to consider the following sequence of operations, and draw
pictures on how the queue and the corresponding stacks change:
enqueue(1), enqueue(2), enqueue(3), enqueue(4), dequeue(),
enqueue(5), enqueue(6), dequeue().


