
Theory and Frontiers of
Computer Science II

Fall 2013
Carola Wenk

Computational Complexity
The field of “computational complexity” tries to categorize the difficulty of
computational problems. It is a purely theoretical area of study, but has
wide-ranging effects on the design and implementation of algorithms.

Turing-Computable Problems

Polynomial-Time:Super-Polynomial:

? ?

Computational Complexity
The field of “computational complexity” tries to categorize the difficulty of
computational problems. It is a purely theoretical area of study, but has
wide-ranging effects on the design and implementation of algorithms.

Turing-Computable Problems

Polynomial-Time:Super-Polynomial:

? ?

The Halting Problem

Upper and Lower Bounds
If we can come up with an algorithm that correctly solves a particular
problem , then its worst-case running time is an upper bound.

What would be more useful though, is evidence that cannot
be solved in a given amount of time. In other words, to establish difficulty
we need a lower bound on the running time of any algorithm for .

Upper Bound

Algorithm A for

can be solved in TA(n) time

Lower Bound

Regardless of the algorithm, the
problem cannot be solved in

less than T*(n) time.

Upper and Lower Bounds
If we can come up with an algorithm that correctly solves a particular
problem , then its worst-case running time is an upper bound.

What would be more useful though, is evidence that cannot
be solved in a given amount of time. In other words, to establish difficulty
we need a lower bound on the running time of any algorithm for .

Upper Bound

MergeSort for sorting a list

Sorting can be done in
O(n log n) time

Lower Bound

Every sorting algorithm requires
at least ??? time.

Upper and Lower Bounds
If we can come up with an algorithm that correctly solves a particular
problem , then its worst-case running time is an upper bound.

What would be more useful though, is evidence that cannot
be solved in a given amount of time. In other words, to establish difficulty
we need a lower bound on the running time of any algorithm for .

Upper Bound

MergeSort for sorting a list

Sorting can be done in
O(n log n) time

Lower Bound

Every sorting algorithm requires
at least cn time.

Can we match the lower bound
to the upper bound?

Lower Bound for Sorting

How many possible orderings?

How many possible outputs?

We came up with an algorithm for sorting that took
time, can we be sure that this is the fastest possible?

Given a list of distinct elements, consider what any algorithm for
sorting actually does:

Unsorted List

Sorted List

Lower Bound for Sorting

Unsorted List

Sorted List

How many possible orderings?

How many possible outputs?

We came up with an algorithm for sorting that took
time, can we be sure that this is the fastest possible?

Given a list of distinct elements, consider what any algorithm for
sorting actually does:

Lower Bound for Sorting
Unsorted List

Sorted List

How many possible orderings?

How many possible outputs?

Any correct sorting algorithm must be able to permute any input
into a uniquely sorted list. Therefore any sorting algorithm must
be able to “apply” any of the possible permutations necessary
to produce the right answer.

Lower Bound for Sorting
Any sorting algorithm must be able to “apply” any of the
possible permutations necessary to produce the right answer.

We can visualize the behavior of any sorting algorithm as a
sequence of decisions based on comparing pairs of items:

Yes No

Yes No

Yes No

NoYes

.

.

.

Algorithm :

Lower Bound for Sorting
For a list with items, let the possible permutations be

. Any sorting algorithm must be able to “reach” all
of these permutations by making a sequence of comparisons.
The corresponding decision tree is:

... ...

What does any of this tell us
about the running time?

This decision tree is a
binary tree, and its height is
a lower bound on the
running time of .

What is the minimum height
of any binary decision tree?

Algorithm :

Lower Bound for Sorting
For a list with items, let the possible permutations be

. Any sorting algorithm must be able to “reach” all
of these permutations by making a sequence of comparisons.
The corresponding decision tree is:

... ...

n! ≤ # leaves ≤ 2height

So, n! ≤ 2height

This is equivalent to:
log n! ≤ height

Algorithm :

Lower Bound for Sorting
For a list with items, let the possible permutations be

. Any sorting algorithm must be able to “reach” all
of these permutations by making a sequence of comparisons.
The corresponding decision tree is:

... ...

n! ≤ # leaves ≤ 2height

So, n! ≤ 2height

This is equivalent to:
log n! ≤ height

Algorithm :

n! = n (n-1) (n-2)  …  1
= n …(n/2+1) n/2 (n/2-1)  …  1

≥ n/2… n/2  n/2  1 …  1

≥ (n/2) n/2

So, n! ≥ (n/2) n/2

Lower Bound for Sorting
For a list with items, let the possible permutations be

. Any sorting algorithm must be able to “reach” all
of these permutations by making a sequence of comparisons.
The corresponding decision tree is:

... ...

n! ≤ # leaves ≤ 2height

So, n! ≤ 2height

This is equivalent to:
log n! ≤ height

So:
log (n/2)n/2 ≤ log n! ≤ height

Algorithm :

So, n! ≥ (n/2) n/2

Lower Bound for Sorting
For a list with items, let the possible permutations be

. Any sorting algorithm must be able to “reach” all
of these permutations by making a sequence of comparisons.
The corresponding decision tree is:

... ...

So:
log (n/2)n/2 ≤ log n! ≤ height

Therefore:
(n/2) log (n/2) ≤ height

Or equivalently:
(1/2) n log n - (n/2) ≤ height

Algorithm :

(n/2) log (n/2) =

What does this tell us about
Merge Sort?

The Power of Lower Bounds

“I can’t find an efficient algorithm, I guess I’m just
dumb.”

Exponential-time Algorithm, Trivial lower bound

[Garey and Johnson ’79]

The Power of Lower Bounds

“I can’t find an efficient algorithm, because no such algorithm is
possible.”

Matching Exponential-time bounds

[Garey and Johnson ’79]

Some Interesting But Hard Problems

• Traveling Salesperson Problem (TSP)

• Satisfiability Problem (SAT)

• Independent Set (IS)

Traveling Salesperson (TSP)
• Suppose you are given a graph on vertices, with

weighted edges, and a constant C.

• Can you find a path of total length at most C that visits every
vertex exactly once?

This problem has many real-world applications in planning and
logistics, and it has many applied variants as well.

v1

v2

v3

v4

2

5
3

1

1

6

C=5

Traveling Salesperson (TSP)
• Suppose you are given a graph on vertices, with

weighted edges, and a constant C.

• Can you find a path of total length at most C that visits every
vertex exactly once?

The simple algorithm would be to just check the length of every
possible path. How many are there?

v1

v2

v3

v4

2

5
3

1

1

6

C=5

Traveling Salesperson (TSP)
• Suppose you are given a graph on vertices, with

weighted edges, and a constant C.

• Can you find a path of total length at most C that visits every
vertex exactly once?

Sadly, we don’t know how do much better than to check the n!
possible paths; we don’t have matching lower bounds either.

v1

v2

v3

v4

2

5
3

1

1

6

C=5

Independent Set (IS)
• Suppose you are given a graph on vertices, and a

constant . An independent set in is a set of vertices that
do not share an edge.

Does have an independent set of size at least ?

This problem has applications to problems where we need to
avoid collisions (e.g. scheduling, coloring).

=3

Independent Set (IS)
• Suppose you are given a graph on vertices, and a

constant . An independent set in is a set of vertices that
do not share an edge.

Does have an independent set of size at least ?

Unfortunately, we don’t know how to check this, other than to
examine all vertex sets of size at least . How many sets are there?

=3

Satisfiability (SAT)
• Suppose you are given a logical formula:

Can we find an assignment of the variables that makes
true?

This has important applications in computer chip
verification.

We can think of as a circuit; one way to test whether
this circuit ever produces a “1” is to just try all inputs.

Sadly, the fastest algorithms essentially do this. Is there a
matching lower bound for SAT?

Difficulty of SAT, IS and TSP
• Where do SAT, IS and TSP fall into our two categories

of problems? Are we just “dumb”?

Turing-Computable Problems

PolyLogarithmic-Time:Super-Polynomial:

SAT, IS, TSP
? ?

Difficulty of SAT, IS and TSP
• SAT, IS and TSP have evaded efficient algorithms for

about 40 years. What have we been doing all this
time?

Turing-Computable Problems

Super-Polynomial:

SAT, IS, TSP
? ?

Polynomial-Time:

Is Checking Easier than Solving?
Potential solution Input

SAT, IS, and TSP solutions can be checked in linear time.

SAT

IS

TSP

The P = NP Question

Turing-Computable Problems

“P”:Super-Polynomial:

SAT, IS, TSP, ...

“NP”:

“NP” is defined as the class of problems that, if given a solution,
it can be checked in polynomial time. There are thousands of
such problems, but we don’t know how to solve any of them in
less than exponential time...

? ?

The P = NP Question

Turing-Computable Problems

“P”:Super-Polynomial:

“NP”:

Do problems that have polynomial-time checkable solutions,
also have polynomial-time algorithms?

SAT, IS, TSP, ...? ?

The P = NP Question

Turing-Computable Problems

“P”:Super-Polynomial:

SAT, IS, TSP, ...

“NP”:

Not a lot of progress has been made on this question...

One interesting fact we have established is that the easy-to-
check problems all appear to have the same difficulty.

? ?

Reducibility:

One way to show that problem is at least as hard as problem
is to show that we can use to solve .

The advantage is that we only need the “reduction”, and not the
full algorithm for .

Input

Algorithm for :

Output
Transform
Into Input to
Problem

Transform
Into output to
Problem

Algorithm that
solves

≤ SortingCompute Minimum

Reducibility

There are thousands of problems in NP that all “reduce” to SAT.

Cook (1971) and Levin (1973) showed that SAT is NP-complete;
if you can solve SAT in polynomial-time, then all problems in NP
can be solved in polynomial-time.

Input

Algorithm for :

Output
Transform
Into Input to
Problem

Transform
Into output to
Problem

Algorithm that
solves

SAT
P1
≤P2

P3P4

Independent Set is as hard as SAT
We can show that the Independent Set problems is as
hard as solving SAT. To do this, we convert an input to
SAT into an Independent Set problem.

Formula with
variables

Does this graph have
an independent set with

vertices?

Given a formula , we can construct an input to IS whose
solution tells us which variables to assign to true to obtain a
satisfying assignment.

polynomial-time

SAT
P1
≤P2

P3P4

≤ IS

SAT

IS

The Power of Lower Bounds

“I can’t find an efficient algorithm, because no such algorithm is
possible.”

Matching Exponential-time bounds

[Garey and Johnson ’79]

State Of The Art

“I can’t find an efficient algorithm, but neither can all these smart people.”

Reductions and NP-Completeness

[Garey and Johnson ’79]

State Of The Art
Given the difficulty of these problems, researchers have
looked for approximations and special cases that are
solvable.

We have also used distributed computing and “human
computing” to help solve important optimization
problems.

Interestingly, difficult problems can be used for security
purposes (factoring, CAPTCHAs, etc.).

Researchers are also studying more powerful models of
computation, such as quantum computing, to address
these kinds of problems.

Using/Solving Hard Problems
ApproximationBrute Force

“Human Computing”

A brute-force search can be easily
“split up”. Recruit the necessary
computational resources and
perform the search in parallel.

Security

We may not always need an exact
answer. Devise algorithms which
produce solutions that are not
exact, but are guaranteed to be
“close”.

Use intractability to protect
sensitive information, by using
the solution to a computationally
difficult problem as a “key.”

Humans appear to be good at
coming up with solutions to some
computationally difficult problems.
Use human intuition to guide
computational search.

“Divide-And-Conquer”

...

Solve Base Cases

...

...

Solution

Input

...

...

Implementing these algorithms is easy because they are
recursive.

Divide-and-Conquer:

1. If the input is small enough,
solve.

2. Otherwise, split input into parts.

3. Recursively solve each part.

4. Merge solutions.

“Distribute-And-Conquer”

...

Solve Subproblems

...

...

Solution

Input

...

...

Implementing these algorithms is easy because intractable
problems are often easy to parallelize. Why?

Distribute-and-Conquer:

1. Split input into subproblems and
distribute.

2. Solve each subproblem.

3. Collect and merge solutions.

Using Difficulty for Security
Any hard-to-solve, but easy-to-check problem makes an ideal
“security question”.

Given a number , the FACTORING problem asks whether
has a factor that is or less.

The difficulty of factoring is the basis for the RSA public-key
cryptosystem.

Alice Bob

Eavesdropper

Public:

Suppose Alice wants to send to Bob. First, Bob
must compute two large primes , and . Then,
Bob chooses a number that shares no factors with

. Finally, Bob computes such that
.

This scheme works because .

Public Key Cryptography

Alice Bob

Eavesdropper

Private:

Public:

Public Key Cryptography

Alice Bob

Eavesdropper

Private:

To break this cryptosystem, we need to reconstruct the
value of . The only way to do this is to factor .

If we could solve FACTORING, we could compute
efficiently. How?

• Computationally intractable problems can be very useful, but
what is we actually want to solve these problems, and not just
use them for security?

• reCAPTCHAs combine these two goals:

• In 2003, humans spent over 9 billion hours playing video
games. The “Games With a Purpose” (GWAPs) project seeks
to solve intractable problem in artificial intelligence with
games.

“Human Computing”

Captcha/reCaptcha

Known Unknown

• How do we establish the difficulty of a given computational
problem?

• How did we define the notion of an efficient algorithm? Why
did we choose this definition?

• What is the ideal pair of facts we would like to know about a
particular computational problem? Why? Is Merge Sort an
optimal algorithm for sorting?

• What is the definition of NP? What is the P=NP question?

• What are the ways in which we deal with intractable
problems?

Recap: Frontiers of Computer Science

