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Computational Complexity
The field of “computational complexity” tries to categorize the difficulty of 
computational problems. It is a purely theoretical area of study, but has 
wide-ranging effects on the design and implementation of algorithms.

Turing-Computable Problems

Polynomial-Time:Super-Polynomial:

? ?
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The Halting Problem



Upper and Lower Bounds
If we can come up with an algorithm that correctly solves a particular 
problem , then its worst-case running time is an upper bound.

What would be more useful though, is evidence that cannot
be solved in a given amount of time. In other words, to establish difficulty 
we need a lower bound on the running time of any algorithm for .

Upper Bound

Algorithm A for 

can be solved in TA(n) time 

Lower Bound

Regardless of the algorithm, the 
problem      cannot be solved in 

less than T*(n) time. 
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MergeSort for sorting a list
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Every sorting algorithm requires 
at least ??? time. 



Upper and Lower Bounds
If we can come up with an algorithm that correctly solves a particular 
problem , then its worst-case running time is an upper bound.

What would be more useful though, is evidence that cannot
be solved in a given amount of time. In other words, to establish difficulty 
we need a lower bound on the running time of any algorithm for .

Upper Bound

MergeSort for sorting a list

Sorting can be done in
O(n log n) time 

Lower Bound

Every sorting algorithm requires 
at least cn time. 

Can we match the lower bound 
to the upper bound?



Lower Bound for Sorting

How many possible orderings?

How many possible outputs?

We came up with an algorithm for sorting that took  
time, can we be sure that this is the fastest possible?

Given a list of distinct elements, consider what any algorithm for 
sorting actually does:

Unsorted List    

Sorted List    



Lower Bound for Sorting

Unsorted List    

Sorted List    

How many possible orderings?

How many possible outputs?

We came up with an algorithm for sorting that took  
time, can we be sure that this is the fastest possible?

Given a list of distinct elements, consider what any algorithm for 
sorting actually does:



Lower Bound for Sorting
Unsorted List    

Sorted List    

How many possible orderings?

How many possible outputs?

Any correct sorting algorithm must be able to permute any input 
into a uniquely sorted list. Therefore any sorting algorithm must 
be able to “apply” any of the       possible permutations necessary 
to produce the right answer.



Lower Bound for Sorting
Any sorting algorithm must be able to “apply” any of the       
possible permutations necessary to produce the right answer.

We can visualize the behavior of any sorting algorithm as a 
sequence of decisions based on comparing pairs of items:

Yes No

Yes No

Yes No

NoYes

.

.

.

Algorithm     :



Lower Bound for Sorting
For a list     with     items, let the possible permutations be

.  Any sorting algorithm must be able to “reach” all 
of these permutations by making a sequence of comparisons. 
The corresponding decision tree is:

... ...

What does any of this tell us 
about the running time?

This decision tree is a 
binary tree, and its height is 
a lower bound on the 
running time of     .

What is the minimum height 
of any binary decision tree?

Algorithm     :



Lower Bound for Sorting
For a list     with     items, let the possible permutations be

.  Any sorting algorithm must be able to “reach” all 
of these permutations by making a sequence of comparisons. 
The corresponding decision tree is:

... ...

n! ≤ # leaves ≤ 2height

So, n! ≤ 2height

This is equivalent to:
log n! ≤ height

Algorithm     :
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... ...
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n! = n (n-1) (n-2)  …  1
= n …(n/2+1) n/2 (n/2-1)  …  1
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≥ (n/2) n/2

So, n! ≥ (n/2) n/2



Lower Bound for Sorting
For a list     with     items, let the possible permutations be

.  Any sorting algorithm must be able to “reach” all 
of these permutations by making a sequence of comparisons. 
The corresponding decision tree is:

... ...

n! ≤ # leaves ≤ 2height

So, n! ≤ 2height

This is equivalent to:
log n! ≤ height

So:
log (n/2)n/2 ≤ log n! ≤ height

Algorithm     :

So, n! ≥ (n/2) n/2



Lower Bound for Sorting
For a list     with     items, let the possible permutations be

.  Any sorting algorithm must be able to “reach” all 
of these permutations by making a sequence of comparisons. 
The corresponding decision tree is:

... ...

So:
log (n/2)n/2 ≤ log n! ≤ height

Therefore:
(n/2) log (n/2) ≤ height

Or equivalently:
(1/2) n log n - (n/2) ≤ height

Algorithm     :

(n/2) log (n/2) =

What does this tell us about 
Merge Sort?



The Power of Lower Bounds

“I can’t find an efficient algorithm, I guess I’m just 
dumb.”

Exponential-time Algorithm, Trivial lower bound

[Garey and Johnson ’79]



The Power of Lower Bounds

“I can’t find an efficient algorithm, because no such algorithm is 
possible.”

Matching Exponential-time bounds

[Garey and Johnson ’79]



Some Interesting But Hard Problems

• Traveling Salesperson Problem (TSP)

• Satisfiability Problem (SAT)

• Independent Set (IS) 



Traveling Salesperson (TSP)
• Suppose you are given a graph     on     vertices, with 

weighted edges, and a constant C. 

• Can you find a path of total length at most C that visits every 
vertex exactly once?

This problem has many real-world applications in planning and 
logistics, and it has many applied variants as well. 
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C=5



Traveling Salesperson (TSP)
• Suppose you are given a graph     on     vertices, with 

weighted edges, and a constant C. 

• Can you find a path of total length at most C that visits every 
vertex exactly once?

The simple algorithm would be to just check the length of every
possible path. How many are there?
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Traveling Salesperson (TSP)
• Suppose you are given a graph     on     vertices, with 

weighted edges, and a constant C. 

• Can you find a path of total length at most C that visits every 
vertex exactly once?

Sadly, we don’t know how do much better than to check the n!
possible paths; we don’t have matching lower bounds either.
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Independent Set (IS)
• Suppose you are given a graph     on     vertices, and a 

constant   .  An independent set in     is a set of vertices that 
do not share an edge.

Does      have an independent set of size at least    ?

This problem has applications to problems where we need to 
avoid collisions (e.g. scheduling, coloring).

=3



Independent Set (IS)
• Suppose you are given a graph     on     vertices, and a 

constant   .  An independent set in     is a set of vertices that 
do not share an edge.

Does      have an independent set of size at least    ?

Unfortunately, we don’t know how to check this, other than to
examine all vertex sets of size at least   . How many sets are there?

=3



Satisfiability (SAT)
• Suppose you are given a logical formula:

Can we find an assignment of the variables that makes 
true?

This has important applications in computer chip 
verification.

We can think of      as a circuit; one way to test whether 
this circuit ever produces a “1” is to just try all inputs. 

Sadly, the fastest algorithms essentially do this. Is there a 
matching lower bound for SAT? 



Difficulty of SAT, IS and TSP
• Where do SAT, IS and TSP fall into our two categories 

of problems? Are we just “dumb”?

Turing-Computable Problems

PolyLogarithmic-Time:Super-Polynomial:

SAT, IS, TSP
? ?



Difficulty of SAT, IS and TSP
• SAT, IS and TSP have evaded efficient algorithms for 

about 40 years. What have we been doing all this 
time?

Turing-Computable Problems

Super-Polynomial:

SAT, IS, TSP
? ?

Polynomial-Time:



Is Checking Easier than Solving?
Potential solution Input

SAT, IS, and TSP solutions can be checked in linear time.

SAT

IS

TSP



The P = NP Question

Turing-Computable Problems

“P”:Super-Polynomial:

SAT, IS, TSP, ...

“NP”:

“NP” is defined as the class of problems that, if given a solution, 
it can be checked in polynomial time. There are thousands of 
such problems, but we don’t know how to solve any of them in 
less than exponential time...

? ?



The P = NP Question

Turing-Computable Problems

“P”:Super-Polynomial:

“NP”:

Do problems that have polynomial-time checkable solutions, 
also have polynomial-time algorithms?

SAT, IS, TSP, ...? ?



The P = NP Question

Turing-Computable Problems

“P”:Super-Polynomial:

SAT, IS, TSP, ...

“NP”:

Not a lot of progress has been made on this question...

One interesting fact we have established is that the easy-to-
check problems all appear to have the same difficulty.

? ?



Reducibility: 

One way to show that problem      is at least as hard as problem     
is to show that we can use      to solve     . 

The advantage is that we only need the “reduction”, and not the 
full algorithm for    .

Input

Algorithm for    :

Output
Transform 
Into Input to 
Problem   

Transform 
Into output to 
Problem   

Algorithm that 
solves 

≤ SortingCompute Minimum



Reducibility

There are thousands of problems in NP that all “reduce” to SAT. 

Cook (1971) and Levin (1973) showed that SAT is NP-complete; 
if you can solve SAT in polynomial-time, then all problems in NP 
can be solved in polynomial-time.

Input

Algorithm for    :

Output
Transform 
Into Input to 
Problem   

Transform 
Into output to 
Problem   

Algorithm that 
solves 

SAT
P1
≤P2

P3P4



Independent Set is as hard as SAT
We can show that the Independent Set problems is as
hard as solving SAT. To do this, we convert an input to
SAT into an Independent Set problem.

Formula with       
variables 

Does this graph have        
an independent set with    

vertices?

Given a formula    , we can construct an input to IS whose 
solution tells us which variables to assign to true to obtain a 
satisfying assignment.

polynomial-time

SAT
P1
≤P2

P3P4

≤ IS

SAT

IS



The Power of Lower Bounds

“I can’t find an efficient algorithm, because no such algorithm is 
possible.”

Matching Exponential-time bounds

[Garey and Johnson ’79]



State Of The Art

“I can’t find an efficient algorithm, but neither can all these smart people.”

Reductions and NP-Completeness

[Garey and Johnson ’79]





State Of The Art
Given the difficulty of these problems, researchers have 
looked for approximations and special cases that are 
solvable.

We have also used distributed computing and “human 
computing” to help solve important optimization 
problems.

Interestingly, difficult problems can be used for security 
purposes (factoring, CAPTCHAs, etc.).

Researchers are also studying more powerful models of 
computation, such as quantum computing, to address 
these kinds of problems.



Using/Solving Hard Problems
ApproximationBrute Force

“Human Computing”

A brute-force search can be easily
“split up”. Recruit the necessary 
computational resources and
perform the search in parallel.

Security

We may not always need an exact 
answer. Devise algorithms which 
produce solutions that are not 
exact, but are guaranteed to be 
“close”.

Use intractability to protect 
sensitive information, by using 
the solution to a computationally 
difficult problem as a “key.”

Humans appear to be good at 
coming up with solutions to some 
computationally difficult problems. 
Use human intuition to guide 
computational search.



“Divide-And-Conquer”

...

Solve Base Cases

...

...

Solution

Input

...

...

Implementing these algorithms is easy because they are 
recursive.

Divide-and-Conquer:

1. If the input is small enough, 
solve.

2. Otherwise, split input into parts.

3. Recursively solve each part.

4. Merge solutions.



“Distribute-And-Conquer”

...

Solve Subproblems

...

...

Solution

Input

...

...

Implementing these algorithms is easy because intractable 
problems are often easy to parallelize. Why?

Distribute-and-Conquer:

1. Split input into subproblems and 
distribute.

2. Solve each subproblem.

3. Collect and merge solutions.



Using Difficulty for Security
Any hard-to-solve, but easy-to-check problem makes an ideal 
“security question”.

Given a number    , the FACTORING problem asks whether      
has a factor that is     or less.

The difficulty of factoring is the basis for the RSA public-key 
cryptosystem.

Alice Bob

Eavesdropper



Public: 

Suppose Alice wants to send                  to Bob. First, Bob 
must compute two large primes    ,    and                .  Then, 
Bob chooses a number     that shares no factors with 

. Finally, Bob computes     such that
.

This scheme works because                              .

Public Key Cryptography

Alice Bob

Eavesdropper

Private: 



Public: 

Public Key Cryptography

Alice Bob

Eavesdropper

Private: 

To break this cryptosystem, we need to reconstruct the 
value of    . The only way to do this is to factor .

If we could solve FACTORING, we could compute      
efficiently. How? 



• Computationally intractable problems can be very useful, but 
what is we actually want to solve these problems, and not just 
use them for security?

• reCAPTCHAs combine these two goals:

• In 2003, humans spent over 9 billion hours playing video 
games. The “Games With a Purpose” (GWAPs) project seeks 
to solve intractable problem in artificial intelligence with 
games.

“Human Computing”

Captcha/reCaptcha

Known Unknown



• How do we establish the difficulty of a given computational 
problem? 

• How did we define the notion of an efficient algorithm? Why 
did we choose this definition?

• What is the ideal pair of facts we would like to know about a 
particular computational problem? Why? Is Merge Sort an 
optimal algorithm for sorting?

• What is the definition of NP? What is the P=NP question?

• What are the ways in which we deal with intractable 
problems?

Recap: Frontiers of Computer Science


