Simple Linear Regression

Fall 2013
Carola Wenk

Simple Linear Regression

- Independent variable: $\mathrm{X}=(\mathrm{X}[1], \ldots, \mathrm{X}[\mathrm{n}])$ dependent variable (to be predicted): $\mathrm{Y}=(\mathrm{Y}[1], \ldots, \mathrm{Y}[\mathrm{n}])$
- Find a line:

$$
Y^{\prime}=a+b X
$$

which minimizes the sum of the squared distances:

$$
\sum_{i=1}^{n}\left(Y[i]-(a+b X[i])^{2}\right.
$$

- The solution line $Y^{\prime}=a+b X$ can be computed as:
- $b=\frac{\sum_{i=1}^{n} X[i] Y[i]-\frac{1}{n} \sum_{i=1}^{n} X[i] \sum_{i=1}^{n} Y[i]}{\sum_{i=1}^{n} X[i]^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} X[i]\right)^{2}}$
- $a=\frac{1}{n} \sum_{i=1}^{n} Y[i]-b \frac{1}{n} \sum_{i=1}^{n} X[i]$

