
Linked Structures
Songs, Games, Movies

Part IV
Fall 2013

Carola Wenk



Storing Text
• We’ve been focusing on numbers. What about text?

We can compare the lexicographic ordering of strings, 
and then construct a binary search tree:

Canal

Camp Car

Chase
Cat

Animal
Bird

“Animal”, “Bird”, “Cat”, “Car”, “Chase”, “Camp”, 
“Canal”



Storing Text
• We’ve been focusing on numbers. What about text?

“Animal”, “Bird”, “Cat”, “Car”, “Chase”, “Camp”, 
“Canal”

In many cases, it would be beneficial to eliminate 
redundancy:

Canal

Camp Car

Chase
Cat

Animal
Bird



Storing Text
• We’ve been focusing on numbers. What about text?

“Animal”, “Bird”, “Cat”, “Car”, “Chase”, “Camp”, 
“Canal”

A prefix tree (or trie) has characters as nodes, and stores 
each string as a path in the tree.

A C
n
I
M
A
L

B
I

R

D

A H
A

S
E

R TM

P
N
A

L

Worst-case 
height?



Prefix Trees

The advantage of a prefix tree is that finding any element requires height 
proportional to the associated string (the average English word is about 5 
letters). 

This representation allows much faster performance than the best-case 
scenario for a binary search tree (e.g. the Oxford English Dictionary has 
about 175K words).

A C
n
I
M
A
L

B
I

R

D

A H
A

S
E

R TM

P
N
A

L

height depends 
on longest 
word.



Linked Structures in Software
Nearly every modern file system uses some type of 
hierarchical layout, as implemented by a tree structure.

In the most general sense, structuring information as a 
tree uses particular attributes (e.g. values, spelling) to 
form subtrees.

We can also think of our data structure as making 
decisions as we go traverse downward.

Decision trees are a basic abstraction that are used for 
a large variety of tasks.



File Systems

MS-DOS Linux

Files in every operating system are organized in a tree 
structure. Moreover, files are laid out on a disk in a tree-
structured manner for efficient access.



Game (Decision) Trees

In adventure and strategy games, player decisions are used to decide how 
the game will progress. This decision tree is used by the computer opponent 
to decide the most “advantageous” move.



Recap: Linked/Hierarchical Structures
What is the “standard” representation of lists in Python?

What is the main advantage of array-based lists?

What is the primary limitation of array-based lists?

What is the “layout” of a linked structure? How do we construct 
and access a linked structure?

In a linked structure with one neighbor relationship per item, how 
quickly can we add/remove items? 

How do we add, remove and find elements in a binary search 
tree?

What is the high-level organization of any tree structure?



Data Compression
How are sounds, images and movies represented in a 
computer?

Sounds and images are continuous signals that can be 
“digitized”.

“Samples” (numbers) that capture the 
amplitude of the signal at each time 
point.



Data Compression
We can store the amplitude (as a number) of a sound signal at 
chosen time intervals; this is the sampling rate. The higher the 
rate, the more “accurate” the sound, and more space we need to 
store the signal.

A WAV file requires about 100MB per minute of audio - can we 
do better?

do better?

“Samples” (numbers) that capture the 
amplitude of the signal at each time 
point.



Data Compression
We can store the amplitude (as a number) of a sound signal at 
chosen time intervals; this is the sampling rate. The higher the 
rate, the more “accurate” the sound, and more space we need to 
store the signal.

A WAV file requires about 100MB per minute of audio - can we 
do better?

do better? MP3
“Moving Pictures Expert Group 
Audio Layer III”



Time and Frequency Domains

We can also represent a sound wave as a collection of 
frequencies and the intensity with which they appear.

A decibel is a logarithmic quantity, so one intensity may need more 
bits than another.



Psychoacoustic Filtering

The MP3 encoding algorithm consists of two high-level steps:

1. Apply psychoacoustic filters to remove information not “perceivable” by 
the human ear/brain.

2. Take the remaining signal and compress it to eliminate redundancy.



Psychoacoustic Filtering

The MP3 encoding algorithm consists of two steps:

1. Apply psychoacoustic filters to remove information not “perceivable” by 
the human ear/brain.

2. Take the remaining signal and compress it to eliminate redundancy.



Eliminating Redundancy

: 00
: 10
: 11

Once we have eliminated sounds that a human is unlikely to be able to hear, 
can we further compress the signal?

What if we have the same (or nearly the same) intensities at a large number 
of frequencies?

We can construct a “code” which takes advantage of this redundancy.



Eliminating Redundancy

: 0
: 10
: 11

Once we have eliminated sounds that a human is unlikely to be able to hear, 
can we further compress the signal?

What if we have the same (or nearly the same) intensities at a large number 
of frequencies?

We can construct a “code” which takes advantage of this redundancy.



Encoding Symbols with Trees
• Given a set of symbols and the frequency with which they 

appear, how can we encode the symbols using as few bits as 
possible?

• A binary tree can serve as a means to encode any set of 
symbols:

Text File

spot jumped, 
spot barked, 
spot ate, 
spot slept, 
spot awoke

spot jumped barked slept ate awoke



• Given a set of symbols and the frequency with which they 
appear, how can we encode the symbols using as few bits as 
possible?

• A binary tree can serve as a means to encode any set of 
symbols:

Text File

spot jumped, 
spot barked, 
spot ate, 
spot slept, 
spot awoke

spot jumped barked slept ate awoke

0 1

0

0

1

1 1 10 0

Encoding Symbols with Trees



• Given a set of symbols and the frequency with which they 
appear, how can we encode the symbols using as few bits as 
possible?

• A binary tree can serve as a means to encode any set of 
symbols:

Text File

spot jumped, 
spot barked, 
spot ate, 
spot slept, 
spot awoke

spot jumped barked slept ate awoke

0 1

0

0

1

1 1 10 0

000 001 010 011 10 11

Encoding Symbols with Trees

Space Used: 
5*3+3+3+3+2+2 =

28 bits



• Given a set of symbols and the frequency with which they 
appear, how can we encode the symbols using as few bits as 
possible?

• We can construct any binary tree we want - the goal is to 
minimize the total space used to encode the source symbols.

Text File

spot jumped, 
spot barked, 
spot ate, 
spot slept, 
spot awoke

spot

jumped barked
slept

ate awoke

0 1

0

0

1

1
10

10

0

100 101 110
1110 1111

Space Used: 
5*1+3+3+3+4+4 =

22 bits

Encoding Symbols with Trees



• Given a set of symbols and the frequency with which they 
appear, how can we encode the symbols using as few bits as 
possible?

• Can we use the frequencies of symbols? Intuitively, we can 
save space by using shorter encodings for frequent symbols.

Text File

spot jumped, 
spot barked, 
spot ate, 
spot slept, 
spot awoke

spot

jumped barked
slept

ate awoke

0 1

0

0

1

1
10

10

0

100 101 110
1110 1111

Space Used: 
5*1+3+3+3+4+4 =

22 bits

Encoding Symbols with Trees



• Given a set of symbols and the frequency with which they 
appear, how can we encode the symbols using as few bits as 
possible?

• How do we find the “optimal” encoding? Is this always 
possible to do quickly?

Text File

spot jumped, 
spot barked, 
spot ate, 
spot slept, 
spot awoke

spot

jumped barked
slept

ate awoke

0 1

0

0

1

1
10

10

0

100 101 110
1110 1111

Space Used: 
5*1+3+3+3+4+4 =

22 bits

Encoding Symbols with Trees



Huffman Coding

Algorithm
1. Take the two least frequent symbols, make them two ‘sibling’ leaves. 
2. Replace these two symbols with a ‘pseudo-symbol’ whose frequency is the sum of the 
two smallest frequencies.
3. Repeat until only a single symbol remains.

Symbols/Frequencies:
‘o’: 1
‘u’: 1
‘x’: 1
‘p’: 1
‘r’: 1
‘l’: 1
‘n’: 2
‘t’: 2
‘m’: 2
‘i’: 2
‘h’: 2
‘s’: 2
‘f’: 3
‘e’: 4
‘a’: 4
‘ ’: 7



Huffman Coding

Intuitively, this algorithm places the lowest frequency symbols at the bottom of the 
tree. But does it always produce the best encoding? David Huffman came up with 
this approach in 1954 (as a graduate student) and proved that it is optimal.

Symbols/Frequencies:
‘o’: 1
‘u’: 1
‘x’: 1
‘p’: 1
‘r’: 1
‘l’: 1
‘n’: 2
‘t’: 2
‘m’: 2
‘i’: 2
‘h’: 2
‘s’: 2
‘f’: 3
‘e’: 4
‘a’: 4
‘ ’: 7

0

0

0

0

0

0

0 0

0

0

0

0

00

0

1

1

1

1

11

1 1

11

1

1

1

1

1

00110
00111
10010
10011
11000
11001
0010
0110
0111
1000
1010
1011
1101
000
010
111



Huffman Encoding and Decoding

Encoding: Convert sequence of symbols into sequence of bits: 
hello  1010 000 11001 11001 00110

Decoding: Scan encoded file from left to right and simultaneously follow path in tree
1101100010111010  fish

Symbols/Frequencies:
‘o’: 1
‘u’: 1
‘x’: 1
‘p’: 1
‘r’: 1
‘l’: 1
‘n’: 2
‘t’: 2
‘m’: 2
‘i’: 2
‘h’: 2
‘s’: 2
‘f’: 3
‘e’: 4
‘a’: 4
‘ ’: 7

0

0

0

0

0

0

0 0

0

0

0

0

00

0

1

1

1

1

11

1 1

11

1

1

1

1

1

00110
00111
10010
10011
11000
11001
0010
0110
0111
1000
1010
1011
1101
000
010
111



Huffman Coding

The last phase of MP3 encoding compresses the filtered signal using 
Huffman coding. Intensities are the symbols, and the frequencies are how 
often they appear in the spectrum.

This algorithm is also widely use for compressing any type of file that may 
have redundancy (e.g., ZIP, JPEG, MPEG). 

Prefix Tree

: 0

: 10

: 11



Huffman Coding

The last phase of MP3 encoding compresses the filtered signal using 
Huffman coding. Intensities are the symbols, and the frequencies are how 
often they appear in the spectrum.

This algorithm is also widely use for compressing any type of file that may 
have redundancy (e.g., ZIP, JPEG, MPEG). 

: 0

: 10

: 11

MP3 Format
...

0001000000110000
1000011000010000
00000

...


