
Linked Structures
Songs, Games, Movies

Part III
Fall 2013

Carola Wenk



Biological Structures

Nature has evolved vascular and nervous 
systems in a hierarchical manner so that 
nutrients and signals can quickly reach their 
destinations. Human Nervous System



A large amount of information can be viewed more easily when it is laid out in 
a hiearchical fashion.



A large amount of information can be viewed more easily when it is laid out in 
a hiearchical fashion.



A large amount of information can be viewed more easily when it is laid out in 
a hiearchical fashion.

Us



A large amount of information can be viewed more easily when it is laid out in 
a hiearchical fashion.



Remember Binary Search?
median

In binary search, immediate access to the median allowed us 
to quickly direct our search to smaller or larger elements.

Can we use this idea to develop a linked structure?



Remember Binary Search?
median

data

left right

• We can split the list into two “halves” of a linked 
structure.



Remember Binary Search?
median

data

left right

The two halves of a binary search tree can be defined 
recursively.



Binary Search Trees
median

data

left right

• How do we define this type of structure in Python?



Binary Search Trees
data

smaller larger

• A node in this linked structure is called a “leaf” if it has 
no “children.” The topmost element is the “root”.

? ?



Binary Search Tree Example

55
data

left right

33 100

32 45 56 101

• Where are the minimum and maximum of the element?
• Can we quickly find any element? 
• What about adding/removing?



Finding the Minimum/Maximum

• The minimum element can be found by following the 
left references, and the maximum element can be 
found by following right references.

55left right

33 100

32 45 56 101



Finding Any Item (Quickly)

55
data

left right

33 100

32 45 56 101

• In exactly the same way as binary search, we can 
recursively focus on one “side” of the tree by checking 
the root element. How long does this take?



Finding Any Item (Quickly)

55
data

left right

33 100

32 45 56 101

• In exactly the same way as binary search, we can 
recursively focus on one “side” of the tree by checking 
the root element. How long does this take?



Finding Any Item (Quickly)

55
data

left right

33 100

32 45 56 101

• In exactly the same way as binary search, we can 
recursively focus on one “side” of the tree by checking 
the root element. How long does this take?

The (worst-case) time to find an item depends on the 
height of the tree. How large can the height be?



Worst Case Scenario
55

33 100

32 45 56 101

• In this particular tree, we can find any element in two 
steps.

32 33 45 56

100101

Is this a tree? Why or why not? 



Worst Case Scenario
55

33 100

32 45 56 101

• In this particular tree, we can find any element in two 
steps.

32 33 45 56

100101

This is a binary tree that’s not very tree-like. Why would a 
tree look like this?



Adding Items
data

left right

According to our definition, we know at least which side of 
the tree to insert.

Algorithm: Recursively determine which side of the tree to 
insert, and create a new element at the bottom.



Adding Items
data

left right

Algorithm: Recursively determine which side of the tree to 
insert, and create a new element at the bottom.

Unfortunately, we can’t control the order in which things 
are added.



Worst Case Scenario
55

33 100

32 45 56 101

32 33 45 56

100101

How were these two trees created?



Worst Case Scenario
55

33 100

32 45 56 101

32 33 45 56

100101

Insertion Order: 55, 33, 100, 32, 45, 56, 101

Insertion Order: 32, 33, 45, 56, 100, 101

Ironically, inserting items in sorted order produces an 
extremely “imbalanced” tree.



Worst Case Scenario
55

33 100

32 45 56 101

32 33 45 56

100101

The height of a binary search tree is the longest root-to-
leaf path; researchers have studied how to minimize this.



Removing Items
55

33 100

32 45 56 101

We may want to remove any item in the tree - what if we 
want to delete the “root”?

We need to find a substitute; where is the next largest 
item in the tree located?



Removing Items
55

33 100

32 45 56 101

We may want to remove any item in the tree - what if we 
want to delete the “root”?

We need to find a substitute; where is the next largest 
item in the tree located?



Removing Items
55

33 100

32 45 56 101

Which two elements can take the place of the item to be 
removed?

Algorithm: Replace the item to be deleted with the 
smallest item larger than it. (The minimum element in the 
right subtree.)



Removing Items
56

33 100

32 45 101

Which two elements can take the place of the item to be 
removed?

Algorithm: Replace the item to be deleted with the 
smallest item larger than it. (The minimum element in the 
right subtree.)



Binary Tree Conversion

• Suppose I gave you a tree, how would you convert it 
into a sorted array?

• What if I wanted to save the tree to a file and 
reconstruct it exactly?

55

33 100

32 45 56 101



Binary Tree Conversion

• Suppose I gave you a tree, how would you convert it 
into a sorted array?

• What if I wanted to save the tree to a file and 
reconstruct it exactly?

55

33 100

32 45 56 101



Binary Tree Conversion

• An in-order traversal works by “visiting” the left 
subtree, then the current item, and then visiting the 
right subtree.

55

33 100

32 45 56 101



Binary Tree Conversion
55

33 100

32 45 56 101

An in-order traversal works by “visiting” the left subtree, 
then the current item, and then visiting the right subtree.



Binary Tree Conversion
55

33 100

32 45 56 101

An in-order traversal works by “visiting” the left subtree, 
then the current item, and then visiting the right subtree.

A pre-order traversal works by “visiting” the item we are 
at, then the left subtree, and then the right subtree.



Summary of Binary Search Trees

The time to perform operations in binary search trees is highly 
dependent on how they are built.

The best-case height of a binary tree is logarithmic in the number of 
elements; there are sophisticated techniques (AVL, red-black) for 
ensuring this height is logarithmic in the number of elements in the 
worst-case.

Do tree data structures always have to be binary? Are they always 
used to add/remove/find elements in a collection?

55

33 100

32 45 56 101

between 
logarithmic and 
linear


