
Linked Structures
Songs, Games, Movies

Fall 2013
Carola Wenk



The Big Picture (So Far)

Hardware
Von Neumann architecture, logic, 
gates, circuits, binary numbers, 
machine instructions

Software Python: variables, loops, if-then, 
functions, lists, recursion

Algorithms
Worst-case analysis of running time, 
simple linear-time algorithms, and 
efficient searching and sorting.



Algorithms So Far

Interestingly, these performance trends comprise a 
large fraction of algorithms - why?

Selection
Sort

Merge Sort

Binary 
Search

Minimum, 
Maximum, Linear 

Search



Roadmap
• Application areas that seem drastically different are 

often tied together by algorithms:

Making a phone call
Listening to music
Surfing the web
Playing a game
Looking for aliens
Curing cancer
Playing Jeopardy
Telepathic control

Embedded Systems

Multimedia, Networking

Search and Optimization

Artificial Intelligence and Machine 
Learning

Algorithm development also brings up the question: what 
abstract problems are efficiently solvable?



Overview
• Media and games must organize data in order to 

provide a unique user experience (to make $$$).

1. How are thousands of songs managed on a mobile device? 

2. How do we actually “play against the computer” in a game?



Songs and Movies

Memory

Hard Drive

CPU

SongSongSongSongSongSong/Video

App
App

App

An iPod can store 
up to 40K songs.

Are media “objects” just stored as a list? How can we quickly 
find/add/remove items?



Songs and Movies

Memory

Hard Drive

CPU

SongSongSongSongSongSong/Video

App
App

App

An iPod can store 
up to 40K songs.

Are media “objects” just stored as a list? How can we quickly 
find/add/remove items?

iOS 
6/Android

Media 
Player



Array-based Lists
• Recall that we were able to access any element of a 

list in constant time. How is this possible?

Instructions

Data
L:

0 1 2 3 ... Lists are actually stored 
contiguously as an array of 
memory locations; we can 
access any element using 
simple arithmetic.

The physical location of the i-th 
element is just i memory 
locations from the beginning of 
the list. 



Modifying Large Arrays

• How is a list of songs actually structured into an array?

0
1
2
3
.
.
.

0
1
2
3
.
.
.



Modifying Large Arrays

• If we store the list of songs as an array, then what do 
we do when we add content to our library?

0
1
2
3
.
.
.

MP3
MP3
MP3
MP3

0
1
2
3
.
.
.



Modifying Large Arrays

• To insert a song into this list, we have to restructure the 
contiguous storage to be larger, and shift elements 
down.

copy
down

0
1
2
3
.
.
.

MP3
MP3
MP3
MP3
MP3

0
1
2
3
.
.
.



Modifying Large Arrays

• In the worst case, we have to move the entire list to 
add or remove entries. Syncing would be a nightmare!

copy
down

0
1
2
3
.
.
.

0
1
2
3
.
.
.



Creating New Types

Fundamentally, the problem of adding new data is that 
there is no room in an array.

We need a different data structure that is more 
“spaced out”.

What we really need is a way to consider items 
separately and link/string them together like “beads”.

Using indirection, we can create our own “type” in 
Python that allows us to dynamically grow a collection 
of items. 



Dynamic Lists (Linked List)

55L: 99

L: 55 99
0 1

somewhere
in memory

In the dynamic list (= linked list), each element has a 
value, as well as what is “next” to it in the list. 

Static

Dynamic (Linked)

...

...



Dynamic Lists (Linked List)

55L: 99

L: 55 99
0 1

How do we add an item to a dynamic list?

Static

Dynamic (Linked)

...

...

somewhere
in memory



Dynamic Lists (Linked List)

55L: 99

L: 55 75
0 1

How do we add an item to a dynamic list?

Static

Dynamic (Linked)

...

...

99

somewhere
in memory

shift items



Dynamic Lists (Linked List)

55L: 99

L: 55 75
0 1

Because each list element explicitly stores where it’s neighbor is, to add an 
element to the dynamic list, we just need to assign a new neighbor.

Static

Dynamic (Linked)

...

...

75

99

somewhere
in memory

shift items



Dynamic Lists (Linked List)

55L: 99

L: 55 75
0 1

In contrast to the static list, we only need to perform a constant 
amount of work to add an item to the dynamic list.

Static

Dynamic (Linked)

...

...

75

99

somewhere
in memory

shift items (linear time)



Dynamic Lists (Linked List)

55L: 99

L: 55 75
0 1

This data structure is often referred to as a linked list.

Static

Dynamic (Linked)

...

...

75

99

somewhere
in memory



Dynamic Lists (Linked List)

55L: 99

L: 55 75
0 1

To implement a linked list, we need to create a new type that 
carries both data and a reference to the “next” item.

Static

Dynamic (Linked)

...

...

75

99

somewhere
in memory



A List Node
class Node:

def __init__(self, data):
self.data = data
self.next = None

def __str__(self):
return str(self.data) 

x = Node('hello')
y = Node('world!')
x.next = y
print x
print x.next

how will a variable of 
this type be initialized?

how can we print the 
contents of this 
variable?

x:

‘hello’

y:

‘world!’



Linked Structures

Dynamic data structures allow us to specifically design how
information is “laid out”. This is one of the keys to enabling the
efficient storage and retrieval of media content on mobile and
embedded devices.


