
Algorithm Analysis
Sorting II

Fall 2013
Carola Wenk

Is Selection Sort Practical?
• What is the running time of selection sort for lists that have

thousands of items?

• The theoretical performance is not particularly promising,
neither is the practical performance:

Can we do better? What is done in practice? How good is the Python
library sort function?

Size: n n2 Selection Sort:
seconds

10 100 0.000505

100 10000 0.002175

1,000 1,000,000 0.178361

10,000 100,000,000 17.010634

100,000 10,000,000,000 2524.767636

Revisiting Selection Sort

What is the minimum amount of time required to sort a
list?

Selection sort takes linear time to place just a single
element. Is this really necessary?

compare

Merging Lists
• Suppose that we instead had a list that had two sorted

halves. Could we do better?

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10
Sorted List A Sorted List B

?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, ?, ?, ?, ?, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, ?, ?, ?, ?, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, ?, ?, ?, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, ?, ?, ?, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, ?, ?, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, ?, ?, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, ?, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, ?, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, 6, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, 6, ?, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, 6, 7, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, 6, 7, ?, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, 6, 7, 8, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, 6, 7, 8, ?, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, 6, 7, 8, 9, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, 6, 7, 8, 9, ?, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ?

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

• Suppose that we instead had a list that had two sorted
halves. Could we do better?

Sorted List A Sorted List B

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Merging Lists

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

Merging Lists
• Suppose that we instead had a list that had two sorted

halves. Could we do better?

Sorted List A Sorted List B

The key idea is to scan through both lists, while moving
the smallest element to a new list. If we finish scanning
either list, the rest of the other list is appended to the
result.

1, 4, 6, 8, 11 2, 3, 5, 7, 9, 10

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Merging Lists
• Suppose that we instead had a list that had two sorted

halves. Could we do better?

Algorithm:

1. Start at the beginning of both lists.

2. Move the smaller element to the result list,
and consider the next element.

3. Repeat until one list is exhausted.

4. Put the other list at the end of the result
list.

Merging Lists

Does this always produce a sorted list? How long does
it take?

Algorithm:

1. Start at the beginning of both lists.

2. Move the smaller element to the result list,
and consider the next element.

3. Repeat until one list is exhausted.

4. Put the other list at the end of the result list.

Merging Lists

Does this always produce a sorted list? How long does
it take? For two lists with a total of items, time.

Algorithm:

1. Start at the beginning of both lists.

2. Move the smaller element to the result list,
and consider the next element.

3. Repeat until one list is exhausted.

4. Put the other list at the end of the result list.

Merging Lists

What is the point of doing this? Aren’t we trying to sort
the list?

Algorithm:

1. Start at the beginning of both lists.

2. Move the smaller element to the result list,
and consider the next element.

3. Repeat until one list is exhausted.

4. Put the other list at the end of the result list.

Merge Sort
Suppose that we know how to merge two sorted lists.
Then, we can sort recursively:

Merge Sort:

• 1. Split the given list into two equal parts.

• 2. Recursively sort each half.

• 3. Merge the sorted halves and return the result.

Merge Sort

def merge_sort (L):
n = len(L)
#base case:
if n<=1:

return L
#recursive case: Recursively sort each half
A = merge_sort(L[:n/2]) # left half, L[0..n/2-1]
B = merge_sort(L[n/2:]) # right half, L[n/2..n-1]
merge sorted halves:
return merge(A,B)

Suppose that we know how to merge two sorted lists.
Then, we can sort recursively:

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

5, 25, 55, 1 8, 10, 11, 2

5, 25 55, 1 8, 10 11, 2

5 25 55 1 8 10 11 2

Actually, not a lot is happening in the recursive calls. So
where is the sorting happening?

Recursive
Calls

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

5, 25, 55, 1 8, 10, 11, 2

5, 25 55, 1 8, 10 11, 2

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

5, 25, 55, 1 8, 10, 11, 2

5, 25 55, 1 8, 10 11, 2

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

5, 25, 55, 1 8, 10, 11, 2

5, 25 55, 1 8, 10 11, 2

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

5, 25, 55, 1 8, 10, 11, 2

5, 25 55, 1 8, 10 11, 2

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

5, 25, 55, 1 8, 10, 11, 2

5, 25 1, 55 8, 10 11, 2

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

1, 5, 25, 55 8, 10, 11, 2

5, 25 1, 55 8, 10 11, 2

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

1, 5, 25, 55 8, 10, 11, 2

5, 25 1, 55 8, 10 11, 2

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

1, 5, 25, 55 8, 10, 11, 2

5, 25 1, 55 8, 10 11, 2

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

1, 5, 25, 55 8, 10, 11, 2

5, 25 1, 55 8, 10 11, 2

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

1, 5, 25, 55 8, 10, 11, 2

5, 25 1, 55 8, 10 2, 11

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort

5, 25, 55, 1, 8, 10, 11, 2

1, 5, 25, 55 2, 8, 10, 11

5, 25 1, 55 8, 10 2, 11

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort

1, 2, 5, 8, 10, 11, 25, 55

1, 5, 25, 55 2, 8, 10, 11

5, 25 1, 55 8, 10 2, 11

5 25 55 1 8 10 11 2

The merge step is actually doing all of the work!

Merge Sort Runtime Analysis

def merge_sort (L):
n = len(L)
#base case:
if n<=1:

return L
#recursive case: Recursively sort each half
A = merge_sort(L[:n/2]) # left half, L[0..n/2-1]
B = merge_sort(L[n/2:]) # right half, L[n/2..n-1]
merge sorted halves:
return merge(A,B)

Runtime
T(n)

c

T(n/2)
T(n/2)

dn

Runtime Recurrence for Merge Sort

T(n) = c if n = 1;
2T(n/2) + dn if n > 1.

•But what does T(n) solve to? I.e., is
it O(n) or O(n2) or O(n3) or …?

Recursion Tree

Recursion Tree

Recursion Tree

Recursion Tree

Is this faster than selection sort? By how much?

So, Merge Sort has runtime O(n log n)

“Divide-And-Conquer”

...

Solve Base Cases

...

...

Solution

Input

...

...

Implementing these algorithms is easy because they are
recursive.

Divide-and-Conquer:

1. If the input is small enough,
solve.

2. Otherwise, split input into parts.

3. Recursively solve each part.

4. Merge solutions.

Analysis of Divide-and-Conquer
• The divide-and-conquer paradigm for algorithms is

easy to implement because we can use recursion, but
the trick to is have an efficient merge step.

• How can we analyze these kinds of algorithms?

Generalized Divide-and-Conquer Recurrence

work to merge number of
recursive calls

size of each split

Because of the “divide” step, these algorithms will often have
a logarithmic term in the running time.

Real-World Sorting

Selection Sort does not scale, but Merge Sort can easily
handle lists with hundreds of thousands of items. The built-
in sort is cleverly optimized to run even faster on many
lists, although its theoretical worst-case performance is
identical to Merge Sort.

Size: n n2 Selection Sort:
seconds

Merge Sort:
seconds

Tim Sort:
seconds

10 100 0.000505 0.000556 0.000013

100 10000 0.002175 0.001619 0.000096

1,000 1,000,000 0.178361 0.020270 0.001035

10,000 100,000,000 17.010634 0.258054 0.015473

100,000 10,000,000,000 2524.767636 2.753175 0.182799

Real-World Sorting
Size: n n2 Selection Sort:

seconds
Merge Sort:
seconds

Tim Sort:
seconds

10 100 0.000505 0.000556 0.000013

100 10000 0.002175 0.001619 0.000096

1,000 1,000,000 0.178361 0.020270 0.001035

10,000 100,000,000 17.010634 0.258054 0.015473

100,000 10,000,000,000 2524.767636 2.753175 0.182799

So, what is the point of sorting? Is it really so important
to do quickly?

Yes! Sorting is probably the most commonly used
“subroutine” in software, and the savings in work can add
up drastically.

Google in a Nutshell

Google processes the entire web and computes “PageRank” to determine
which pages are most authoritative. The PageRank is essentially the chance
that a random web-surfer would end up on a particular page.

“jaguar”

“jaguar”

“jaguar”

“jaguar” Results
Page B
Page C
Page E
Page A

.

.

.

Google in a Nutshell

Query

Result

Google Data Center

1. Search for query keywords in mined pages.
2. Select a set of “matching” pages and ads.
3. Sort pages by PageRank and return results.

jaguar

Google in a Nutshell

Google Data Center

1. Search for query keywords in mined pages.
2. Select a set of “matching” pages and ads.
3. Sort pages by PageRank and return results.

This is done 3,000,000,000 times a day.

Query

Result

jaguar

Google Data Center on the Columbia River in Oregon.

An average Google query takes .2s. Suppose that 50% of the time was
due to sorting, and that we are sorting about 10,000 items. What would
happen if we substituted selection sort?

Recall that computation is work, and requires electricity. This is a major
recurring cost for Google (2 billion kWh in 2010); they attempt to maximize
the “revenue-per-query.”

