
Algorithm Analysis
Sorting

Fall 2013
Carola Wenk

Sorting
Let’s consider the problem of sorting a list of numbers.

List Program Sorted
List

A list in ascending
order.

Can we make the specifications more concrete?

An arbitrary list with
comparable items.

Sorting
Let’s consider the problem of sorting a list of numbers.

List Program Sorted
List

How do we sort a list?

L = [2,1,9, ...]
L[i] <= L[i+1], for all
values of i from 0..n-2.

A Sorting Algorithm

Let’s consider the problem of sorting a list of numbers.

What is the running time?

Algorithm:

1. Find the minimum element in the
list.

2. Swap it with the first element.

3. Repeat with the rest of the list.

A Sorting Algorithm

Let’s consider the problem of sorting a list of numbers.

What is the running time? How many times do we find the
minimum?

Algorithm:

1. Find the minimum element in the
list.

2. Swap it with the first element.

3. Repeat with the rest of the list.

Algorithm Analysis

Each time we find a minimum, we are reducing the time
spent on searching for “future” minima. The list sizes are:

The corresponding number of operations is:

This approach to sorting a list is often called “selection”
sorting. For a list with elements, we perform about
operations to find the minimum.

Algorithm Analysis

Each time we find a minimum, we are reducing the time
spent on searching for “future” minima. The list sizes are:

The corresponding number of operations is:

This approach to sorting a list is often called “selection”
sorting. For a list with elements, we perform about
operations to find the minimum.

Algorithm Analysis

Each time we find a minimum, we are reducing the time
spent on searching for “future” minima. The list sizes are:

The corresponding number of operations is:

This approach to sorting a list is often called “selection”
sorting. For a list with elements, we perform about
operations to find the minimum.

An Implementation
find the index of the minimum in L
def my_min_index(L):
curr_min_index = 0
for i in range(1,len(L)):
if (L[i] < L[curr_min_index]):
curr_min_index = i

return curr_min_index

swap the contents of L[i] and L[j]
def swap(L, i, j):
temp = L[i]; L[i] = L[j]; L[j] = temp

sort a list in O(n^2) time
def selection_sort(L):

An Implementation
find the index of the minimum in L
def my_min_index(L):
curr_min_index = 0
for i in range(1,len(L)):
if (L[i] < L[curr_min_index]):
curr_min_index = i

return curr_min_index

swap the contents of L[i] and L[j]
def swap(L, i, j):
temp = L[i]; L[i] = L[j]; L[j] = temp

sort a list in O(n^2) time
def selection_sort(L):
n = len(L)
for i in range(n):

An Implementation
find the index of the minimum in L
def my_min_index(L):
curr_min_index = 0
for i in range(1,len(L)):
if (L[i] < L[curr_min_index]):
curr_min_index = i

return curr_min_index

swap the contents of L[i] and L[j]
def swap(L, i, j):
temp = L[i]; L[i] = L[j]; L[j] = temp

sort a list in O(n^2) time
def selection_sort(L):
n = len(L)
for i in range(n):
j = i + my_min_index(L[i:])
swap(L, i, j)

“List Slicing”

