
Algorithm Analysis
Fall 2013

Carola Wenk



Computer – Program – Algorithm

Input OutputComputer

Nearly every modern electronic device can be thought of 
as a computer that transforms input to the desired output.



Computer – Program – Algorithm

Input OutputComputer
Program

Most computers are general-purpose: we can accomplish 
a number of different tasks on a single piece of hardware 
by changing the program being executed.



Computer – Program – Algorithm

Input OutputComputer
Program

Algorithm

A program is just a realization (= implementation) of an 
abstract procedure, or algorithm, on a particular hardware 
platform (= computer). One algorithm can be used for a 
variety of applications.



What is an Algorithm?

Input OutputAlgorithm

We think of an algorithm as a sequence of actions to take 
input and produce output.

We assume a model of computation, usually an abstract 
instruction set (arithmetic operations, if-then, loops) and 
assign unit cost (= time) to them.



Describe an Algorithm Input OutputAlgorithm

1. Define the problem (input, output)
2. Describe the algorithm (in words or in 

pseudo-code)
3. Proof of correctness (convince the reader of 

correctness)
4. Analysis (runtime, space)



Describe an Algorithm: 
Computing the minimum of n numbers
1. Define the problem (input, output)
Input: A list of n numbers.

Output: The value of the minimum number. 
[Other option: The index of the minimum 
number.] 



Describe an Algorithm: 
Computing the minimum of n numbers
2. Describe the algorithm (in words or in 

pseudo-code)

• Loop through all numbers.
• Keep track of the minimum number seen so 

far.
• If current number is less than the minimum 

seen so far, update the minimum. 



Describe an Algorithm: 
Computing the minimum of n numbers
2. Describe the algorithm (in words or in 

pseudo-code)

def my_min(list):
min_so_far = list[0]
for i in range(1,len(list)):

if list[i] < min_so_far:
min_so_far = list[i]

return min_so_far



Describe an Algorithm: 
Computing the minimum of n numbers
3. Proof of correctness (convince the reader of 

correctness)

def my_min(list):
min_so_far = list[0]
for i in range(1,len(list)):

if list[i] < min_so_far:
min_so_far = list[i]

return min_so_far

list 0 1 2 n-1…

i-1 i

• At beginning of loop 
body:

min_so_far = minimum
of list[0]…list[i-1]

• Loop body updates 
min_so_far



Describe an Algorithm: 
Computing the minimum of n numbers
4. Analysis (runtime, space)

def my_min(list):
min_so_far = list[0]
for i in range(1,len(list)):

if list[i] < min_so_far:
min_so_far = list[i]

return min_so_far

• Let n = len(list)
Instructions:

1

≤ 3(n-1)

1

• Runtime: ≤ 2 + 3n – 3 = 3n -1 Runtime linear in n
Runtime O(n)



Slow algorithm to compute the 
minimum of n numbers

def my_min_slow(list):
min_so_far = list[0]
for j in range(1,len(list)+1):

for i in range(0,j):
if list[i] < min_so_far:

min_so_far = list[i]
return min_so_far

• Let n = len(list)

Instructions:
1

≤ 3j

1

• Runtime: ≤ Runtime quadratic in n
Runtime O(n2)

෍ሺ3݆ ൅ 1ሻ
௡

௝ୀଵ

		ൌ 3	
݊ሺ݊ ൅ 1ሻ

2 ൅ ݊

ଷ
ଶ

ଶ ହ
ଶ



Runtimes: Functions in input size n
Runtime for my_min: f(n)= 3n-1 

Runtime for my_min_slow: g(n) = ଷ
ଶ

ଶ ହ
ଶ

Which one is better? And for what values of n?



Asymptotic Runtime Analysis
To evaluate the abstract runtime of an algorithm, we 
want to know its asymptotic behavior as a function of 
the input size. 
 How does the algorithm perform if the input grows 
larger and larger?

Time

Input Size

The growth rate of the 
running time allows us to 
compare and contrast two 
potential algorithms before
implementing them.



(Worst-Case) Asymptotic Runtime 
Analysis
Usually, the abstract performance of an algorithm 
depends on the actual input for any particular size n.

Which inputs should we use to characterize runtime?

Time

Input Size

“No matter what, my algorithm
takes at most cn steps for an 
input size of n.”

We define algorithm performance 
as conservatively as possible, on
the worst-case inputs.



(Worst-Case) Asymptotic Runtime 
Analysis
Usually, the abstract performance of an algorithm 
depends on the actual input for any particular size n.

Which inputs should we use to characterize runtime?

Time

Input Size

We define algorithm performance 
as conservatively as possible, on
the worst-case inputs.

Definition: f(n)O(g(n)) iff
଴ ଴


