CMPS 1500 Introduction to Computer Science I — Fall 13

11/5/13

9. Homework
Programming portion due Friday 11/15/13 at 11:55pm on Blackboard.
Written portion (problem 1) due Friday 11/15/13 at the beginning of class.

Please download the template script hw9_template.py, and rename it as
lastName_firstName hw9.py. The written portion can be turned in on paper.

In order to receive any credit for the programming portions, you are required to
thoroughly comment and test your code.

1. Huffman coding on paper (6 points)
Consider the following input text: aaabbbbcccccdddddd . This input text is also given
in inputl.txt.

(a) (1 point) What is the list of symbol frequencies for this text?

(b) (3 points) On paper, compute the Huffman tree for the input text. Show all the
steps of the construction, and identify the final tree.

—
o
~

(1 point) Encode the input text using the Huffman tree you just constructed.

(d) (1 point) The input text uses ASCII character encoding. Each ASCII character in
a text file is stored using one byte (= eight bits). What is the length of the input
text in bits and in bytes? What is the length of the Huffman-encoded text in bits
and in bytes?

2. Huffman coding implementation (18 points)
Please download the file hw9.zip; this includes the following files: inputl.txt,
input3.txt, trainingInput.txt, output2.txt. In this project, a HuffmanTree
node contains the frequency associated with this node, the string chars of all
characters in all leaves in the tree rooted at this node, as well as references to the left
and right subtrees.

(a) (2 points) The function construct HuffmanTree(s) serves to initialize the
HuffmanTree construction: First it processes the string s by computing a list
frequencyList of (character,frequency) pairs, which is sorted by increasing
frequency. The missing code converts this list into a list of singleton HuffmanTree
nodes (with corresponding character and frequency values). It then calls
construct HuffmanTree from List(...).

Fill in the missing code. Test your code using inputl.txt and visualize the tree
using print_tree(...).

(b) (5 points) The function construct_HuffmanTree from List(...) is the main
function that constructs the HuffmanTree from a sorted list of HuffmanTrees. It
should use the following functions:

e combineTrees(treel,tree2) takes two HuffmanTrees and returns a
combined HuffmanTree with an updated frequency, chars string, and left
and right references.

e insert HuffmanTree(...) inserts one new HuffmanTree at the correct
position into a sorted list of HuffmanTrees.

FLIP OVER TO BACK PAGE —>



(e)

(f)

Fill in the code for this function. Test your code using inputl.txt and visualize
the tree using print tree(...).

(4 points) The encode(...) function encodes an input string given a
HuffmanTree. The result should be a bit string of ’0’s and ’1’s. Fill in the missing
code. Test your code using inputl.txt.

(2 points) Test your encoding code with trainingInput.txt as the string to
construct the HuffmanTree from, and with inputl.txt, input3.txt, as well as
trainingInput.txt as string inputs to be encoded. For each of these three input
strings and encoded strings, compute their length in bits and in bytes.

(4 points) The decode(...) function decodes an input bit string given a
HuffmanTree. Fill in the missing code. Test your code by decoding a previously
encoded string.

(1 point) Test your decode function on output2.txt. What is the decoded text?



