
CMPS 1500 Introduction to Computer Science I – Fall 13

10/28/13

8. Homework
Programming portion due 11/5/13 at 11:55pm on Blackboard.

Written portion (part 4(b)) due 11/6/13 at the beginning of class.

Please create one or more Python files for this homework, and use the following
naming convention: lastName firstName hw8 Number.py. The written portion can be
turned in on paper.

In order to receive any credit for the programming portions, you are
required to thoroughly comment and test your code.

1. FIFO Queue (8 points)
A first-in first-out queue (FIFO Queue) is a data structure that conceptually
stores a linear list of items by providing the following functionality:

• enqueue(item) appends the new item at the end of the queue.

• dequeue() removes the front item from the queue and returns it. It returns
None if the queue is empty.

• isEmpty() returns True if the queue is empty, and False otherwise.

Write a class Queue that uses a linked list to store a FIFO queue, and that
implements the three methods enqueue, dequeue, isEmpty in constant
time. For this you have to store a reference to the front, as well as to the rear

of the queue, and you have to store the size of the queue (the number of
elements it contains). The three attributes/variables front, rear, size have to
be initialized in the constructor init . Make sure that you implement
enqueue, dequeue, isEmpty as methods (i.e., as part of the class) and not as
functions (i.e., outside of the class).

As comments in the code, justify why the runtime of enqueue, dequeue,

isEmpty is constant.

2. Linked list from BST (3 points)
Write a function that takes as input a binary search tree, and returns a
linked-list that stores a post-order traversal of the tree.

3. BST from array (4 points)
Write a function that takes as input a sorted array (i.e., python-list) L of
numbers. The function should return a reference to the root node of a binary
search tree that stores all numbers in L.
(Hint: Use recursion. Repeatedly compute the median, similar to binary search,
and use recursion to create the left and right subtrees.)

Flip over to back page =⇒



4. EXTRA CREDIT: BST from linked list (8 bonus points)

(a) (4 bonus points) Write a function that takes as input a reference to the
front node front of a linked list. This linked list contains a post-order
traversal of a binary search tree of numbers. The function should return the
binary search tree that has this post-order traversal.
(Hint: Use recursion. The post-order traversal has the root at the very end,
and the first part of the traversal consists of numbers less than the root,
while the latter part consists of numbers greater than the root.)

(b) (2 bonus points) Describe an example list that will cause the best-case
runtime, and describe an example list that will cause the worst-case runtime.

(c) (2 bonus points) What are the best-case and the worst-case runtimes of
your function?


