CMPS 1500 Introduction to Computer Science I - Fall 13

4. Homework

Programming portion (problems 1 and 3) due $\mathbf{1 0} / \mathbf{1 / 1 3}$ at 11:55pm on Blackboard. Written portion (problem 2) due 10/2/13 at the beginning of class.

Please create a separate Python file for problem 1 and problem 3 below. Please use the following naming convention: lastName_firstName_hw4_number.py and submit it on Blackboard.

In order to receive any credit for the programming portions, you are

 required to thoroughly comment and test your code.1. Runtimes (7 points)

Consider the functions my min and my min_slow that we covered in class. The goal of this exercise is to compare the runtimes of both functions for lists of varying size.
(a) (3 points) Write a program that creates lists of increasing sizes, runs both functions on those lists, and prints out the list size and the runtime for each list. This should result in a sequence of triples (list size, runtime for my_min, runtime for my_min_slow). You should have at least 10 such samples, and try to make the lists as large as possible.
(b) (3 points) Produce a plot that shows both sequences of runtime data; you can use the plotting tool of your choice, possibly Excel. Which of these runtime functions grows faster, and why?
(c) (1 point) Explain in words why my_min_slow correctly computes the minimum of the input array. What exactly do the for-loops do?
In addition to the code, please create an electronic file with your answers to parts (b) and (c), including your plot, and upload the file to Blackboard.

2. Code Tracing (6 points)

The goal of this exercise is to trace how variables change during the execution of code.

For each of the code fragments below do the following: Trace the code, and for each time \#snapshot is encountered, draw a picture of the current variable values in memory. Remember that the \#snapshot comment inside the loops will be encountered multiple times, so you will have to draw the current variable values in memory for each of those encounters.

```
(a) }\textrm{x}=
i=0
while i<4:
        #snapshot
        x = x + i*i
        i = i+1
print x
#snapshot
```

(b) $x=1$
list $=$ range $(1,5)$
for i in list:
\#snapshot
$\mathrm{x}=\mathrm{x} * 2$
print x
\#snapshot

3. Pascal's triangle (9 points)

The goal of this exercise is to write a program that prints Pascal's triangle:
[1]
$[1,1]$
$[1,2,1]$
$[1,3,3,1]$
$[1,4,6,4,1]$
$[1,5,10,10,5,1]$
$[1,6,15,20,15,6,1]$
$[1,7,21,35,35,21,7,1]$
Each row of Pascal's triangle has a 1 at the beginning, and a 1 in the end, and each other number is defined as the sum of the number left-diagonally above it and the number directly above it. So, the row $[1,5,10,10,5,1]$ is computed as 1 , then $5=1+4$, then $10=4+6$, then $10=6+4$, then $5=4+1$, and then 1 . The triangle above has 8 rows that are numbered $0 \ldots 7$.
(a) (2 points) As a warmup, write a function fifth_row() that computes the fifth row of Pascal's triangle from its fourth row. For this, you should assign row $=[1,4,6,4,1]$, and then write a loop that computes a new list called newrow from the numbers stored in row.
(b) (6 points) Write a function pascal(n) that prints rows 0 to n of Pascal's triangle. For this you will need two nested loops. The inner loop should look similar to the code for fifth_row. You may assume that $n \geq 2$. Test your function with several values of n.
(c) (1 point) What is the asymptotic running time of pascal(n) in terms of n ? Please write your answer as a comment in your code, together with a very brief justification.
(d) (Extra credit. This is not mandatory.) Write code that prints Pascal's triangle in a neater layout as follows:

