
CMPS 1500 Introduction to Computer Science I – Fall 13

9/20/13

4. Homework
Programming portion (problems 1 and 3) due 10/1/13 at 11:55pm on Blackboard.

Written portion (problem 2) due 10/2/13 at the beginning of class.

Please create a separate Python file for problem 1 and problem 3 below. Please use the
following naming convention: lastName firstName hw4 number.py and submit it on
Blackboard.

In order to receive any credit for the programming portions, you are
required to thoroughly comment and test your code.

1. Runtimes (7 points)
Consider the functions my min and my min slow that we covered in class. The
goal of this exercise is to compare the runtimes of both functions for lists of
varying size.

(a) (3 points) Write a program that creates lists of increasing sizes, runs both
functions on those lists, and prints out the list size and the runtime for each
list. This should result in a sequence of triples (list size, runtime for my min,
runtime for my min slow). You should have at least 10 such samples, and
try to make the lists as large as possible.

(b) (3 points) Produce a plot that shows both sequences of runtime data; you
can use the plotting tool of your choice, possibly Excel. Which of these
runtime functions grows faster, and why?

(c) (1 point) Explain in words why my min slow correctly computes the
minimum of the input array. What exactly do the for-loops do?

In addition to the code, please create an electronic file with your
answers to parts (b) and (c), including your plot, and upload the
file to Blackboard.

2. Code Tracing (6 points)
The goal of this exercise is to trace how variables change during the execution of
code.

For each of the code fragments below do the following: Trace the code, and for
each time #snapshot is encountered, draw a picture of the current variable
values in memory. Remember that the #snapshot comment inside the loops will
be encountered multiple times, so you will have to draw the current variable
values in memory for each of those encounters.

(a) x=0

i=0

while i<4:

#snapshot

x = x + i*i

i = i+1

print x

#snapshot

Flip over to back page =⇒



(b) x=1

list = range(1,5)

for i in list:

#snapshot

x = x*2

print x

#snapshot

3. Pascal’s triangle (9 points)
The goal of this exercise is to write a program that prints Pascal’s triangle:

[1]

[1, 1]

[1, 2, 1]

[1, 3, 3, 1]

[1, 4, 6, 4, 1]

[1, 5, 10, 10, 5, 1]

[1, 6, 15, 20, 15, 6, 1]

[1, 7, 21, 35, 35, 21, 7, 1]

Each row of Pascal’s triangle has a 1 at the beginning, and a 1 in the end, and
each other number is defined as the sum of the number left-diagonally above it
and the number directly above it. So, the row [1, 5, 10, 10, 5, 1] is
computed as 1, then 5 = 1+4, then 10 = 4+6, then 10 = 6+4, then 5 = 4+1,
and then 1. The triangle above has 8 rows that are numbered 0 . . . 7.

(a) (2 points) As a warmup, write a function fifth row() that computes the
fifth row of Pascal’s triangle from its fourth row. For this, you should assign
row = [1, 4, 6, 4, 1], and then write a loop that computes a new list
called newrow from the numbers stored in row.

(b) (6 points) Write a function pascal(n) that prints rows 0 to n of Pascal’s
triangle. For this you will need two nested loops. The inner loop should
look similar to the code for fifth row. You may assume that n ≥ 2. Test
your function with several values of n.

(c) (1 point) What is the asymptotic running time of pascal(n) in terms of n?
Please write your answer as a comment in your code, together with a very
brief justification.

(d) (Extra credit. This is not mandatory.) Write code that prints Pascal’s
triangle in a neater layout as follows:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1


