CMPS 1500 Introduction to Computer Science I - Fall 13

3. Homework

Due $\mathbf{9 / 2 4 / 1 3}$ at 11:55pm on Blackboard
Please create a separate python file for each of the two exercises below, and submit the files on Blackboard. Please use the following naming convention:
lastName_firstName_hw3_number.py and submit it on Blackboard; here, number should be either 1 or 2 .

1. Sum of fractions ($\mathbf{1 2}$ points)

(a) (5 points) Write a function that takes n as input, and returns the sum

$$
\sum_{i=1}^{n} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \ldots+\frac{1}{n}
$$

In the main body of your script, test your output with several values for n . (Hint: Make sure that you use floating point numbers to compute the sum. Your result should be greater than 1 for $n>1$.)
(b) (3 points) Modify your function to include error handling of the following kind: If n is not an integer (for example a floating point number, or a string), return -1. In the main body of your script, test your output with several non-integer values for n.
(c) (4 points) The following series is known to slowly approximate π :

$$
\pi=4 *\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11} \ldots\right)
$$

Write a function that takes n as input and uses this formula to approximate π. Your function should compute a finite sum, and the number of summands should be specified using n . In the main body of your script, test your output with several large values for n

2. Conversion ($\mathbf{1 0}$ points)

(a) (5 points) Write a function that takes a list as input, and returns a list in reverse order. In the main body of your script, test your output with several values for n .
(b) (5 points) Write a function that takes n as input, and converts n into a binary number. You can either print the output directly, represent it as a string, or represent it as a list of bits. In the main body of your script, test your output with several values for n . (Hint: Use the conversion algorihm that repeatedly divides by 2 and uses the remainders to obtain the desired bits.)

