CMPS 1500 Introduction to Computer Science I - Fall 13

9/3/13

1. Homework

Due $\mathbf{9 / 1 1} / \mathbf{1 3}$ at the beginning of class

1. Hexadecimal numbers (8 points)

Hexadecimal numbers are numbers in base 16. They use the following sixteen digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$.
(a) Convert $A 2 F 31_{16}$ to decimal.
(b) Convert 4576_{10} into hexadecimal.
(c) Convert 0001000111100000_{2} to hexadecimal. How can you use the fact that $16=2^{4}$?
(d) If you convert a 32-bit binary number into hexadecimal, how many hexadecimal digits does it have?

2. NOR (6 points)

We have mentioned in class that any Boolean function can be expressed using a combination of \wedge, \vee, \neg. In practice, however, it is more efficient to manufacture fewer types of gates.
(a) (2 points) Show that it suffices to only manufacture gates for the operators \vee, \neg, by showing that \wedge can be implemented using \neg and \vee only.
(b) (4 points) Consider the NOR operator \downarrow which is defined using the truth table below. $x \downarrow y$ is equivalent to $\neg(x \vee y)$.

x	y	$x \downarrow y$
0	0	1
0	1	0
1	0	0
1	1	0

Show that both \neg and \vee can be implemented using \downarrow, i.e., it actually suffices to manufacture NOR gates only.

3. Adding three bits (10 points)

In this exercise you will design a circuit for adding three bits v, x, y, resulting in two outputs c and z that represent the addition $v+x+y$. This is the same as the full adder that we covered in class. Try to make the circuit depth as small as possible.
(a) (6 points) Express c and z with logical formulas using only \wedge, \vee, \neg operators. Use a truth table to show your work.
(b) (4 points) Draw the corresponding circuit diagram.

