9/3/13

1. Homework

Due 9/11/13 at the beginning of class

1. Hexadecimal numbers (8 points)

Hexadecimal numbers are numbers in base 16. They use the following sixteen digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

- (a) Convert $A2F31_{16}$ to decimal.
- (b) Convert 4576_{10} into hexadecimal.
- (c) Convert 0001000111100000₂ to hexadecimal. How can you use the fact that $16 = 2^4$?
- (d) If you convert a 32-bit binary number into hexadecimal, how many hexadecimal digits does it have?

2. NOR (6 points)

We have mentioned in class that any Boolean function can be expressed using a combination of \land, \lor, \neg . In practice, however, it is more efficient to manufacture fewer types of gates.

- (a) (2 points) Show that it suffices to only manufacture gates for the operators \lor, \neg , by showing that \land can be implemented using \neg and \lor only.
- (b) (4 points) Consider the NOR operator \downarrow which is defined using the truth table below. $x \downarrow y$ is equivalent to $\neg(x \lor y)$.
 - $\begin{array}{c|ccc} x & y & x \downarrow y \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$

Show that both \neg and \lor can be implemented using \downarrow , i.e., it actually suffices to manufacture NOR gates only.

3. Adding three bits (10 points)

In this exercise you will design a circuit for adding three bits v, x, y, resulting in two outputs c and z that represent the addition v + x + y. This is the same as the full adder that we covered in class. Try to make the circuit depth as small as possible.

- (a) (6 points) Express c and z with logical formulas using only \land, \lor, \neg operators. Use a truth table to show your work.
- (b) (4 points) Draw the corresponding circuit diagram.