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Abstract

Road networks are always changing: new streets are
built, accidents and floods close roads, etc. Detect-
ing when, and if, a change has occurred is an im-
portant question. In this presentation, we highlight
recent progress in computing the distance between
two road networks.

Audience

This talk is intended for a general computer sci-
ence audience, who need not be familiar with road
network reconstruction and comparison. We will
highlight several algorithms, but will avoid the te-
dious technical details.

1 Introduction

The task of comparing road networks has received
a lot of attention lately with the emergence of al-
gorithms to reconstruct road networks from GPS
trajectory data. For example, the Open Street
Map project1 provides crowd-sourced data freely
to the public. Additionally, several automatic road
network reconstruction algorithms have been pro-
posed; see e.g. [1, 3, 7, 8, ?]. However, it remains
a challenge to evaluate the quality of the recon-
structed networks, even in the presence of the true
road network. In this short abstract, we highlight
several distance measures between road networks.

We model a road network as an embedded pla-
nar graph, G = (V,E) ⊂ R2. We assume that V
is a set of vertices with degree 6= 2 and each edge
in E is represented as a polygonal curve. That is,
intersections in the road networks are vertices and
(piecewise linear) road segments connecting consec-
utive intersections make up the edges.
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Figure 1: Road networks can have a small Haus-
dorff distance, but different topological structures.

2 Approaches

We now assume that we have two embedded graphs:
G0 = (V0, E0) and G1 = (V1, E1). For example,
G0 could represent the true road network, and G1

could be the approximation of the true network,
computed from GPS trajectory data. We discuss
several techniques for measuring the distance be-
tween G0 and G1.

One of the natural ways to measure distance
given two embedded objects is the Hausdorff dis-
tance. However, one could then allow networks
with disconnected travel paths to be very similar,
even though driving routes on the two would nec-
essarily be very different; consider the maps in Fig-
ure 1. Below, we outline three distance measures
between embedded graphs that are useful for the
application of road network comparison.

2.1 Hänsel and Gretel Distance

As we mentioned above, the Hausdorff distance
does not take the local topology into account.
In [5], a sampling-based distance is proposed that
incorporates the topology of the graphs.

Fix parameters r > 0 (locality radius), d > 0
(jump distance), and δ > 0 (neighborhood thresh-
old). We choose a random point in G0. This is our
seed s. We then place a red bread crumb at s, as
well as at all points in G0 at distance kd from s
for k an integer and kd < r. Here, we are measur-
ing the distance within G0. We repeat this process
with graph G1, placing blue bread crumbs. We now
find a maximum matching between the red bread
crumbs and the blue bread crumbs, where we can
match a red bred crumb and a blue bread crumb
if their distance is at most δ. We now have ns red
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bread crumbs and ms blue ones, of which ks are
matched. Repeating this process for a large number
of seeds taken i.d.d., let n =

∑
s ns, m =

∑
sms,

and k =
∑
s ks. We then compute the statistical

precision and recall:

pre0,1 =
k

m
and rec0,1 =

k

n
.

The F -score is the distance measure:

Definition 2.1 (HG-Distance) The Hänsel and
Gretel (HG) distance is the statistical F -score, with
respect to G0, given by

F (G0, G1) = 2
pre0,1rec0,1

pre0,1 + rec0,1
.

2.2 Path-Based Distance

Another approach to computing distances between
maps is to quantify how similar or different is to
travel within a road network. We consider the set
of paths between two vertices u and v in Gi. A path
between u and v is the image of a continuous map
α : [0, 1] → Gi such that α(0) = u and α(1) = v.
We denote the set of all paths in Gi by Πi. Our
distance measure between two embedded graphs is
based on the Fréchet distances between paths in Π0

and Π1.

Definition 2.2 (Fréchet Distance) For two
planar curves f, g : [0, 1] → R2, the Fréchet
distance δF between them is defined as

δF (f, g) = inf
α

max
t∈[0,1]

‖f(t)− g(α(t))‖, (1)

where α : [0, 1] → [0, 1] ranges over all continuous,
surjective, non-decreasing re-parameterizations.

The Fréchet distance is a well-suited distance mea-
sure for comparing curves, or paths, because it
takes continuity and monotonicity of the curves into
account. The Fréchet distance between two polyg-
onal curves with m and n vertices, respectively, can
be computed in O(mn logmn) time [4].

For each path in one graph, we find the closest
path in the other, with respect to the Fréchet dis-
tance. This leads to a directed distance measure:

Definition 2.3 (Path-Based Distance) The
directed Path-Based Distance between G0 and G1

is defined as:

−→
d (G0, G1) = max

p0∈Π0

min
p1∈Π1

δF (p0, p1). (2)

The undirected distance, d(G0, G1) is defined as

max(
−→
d (G0, G1),

−→
d (G1, G0)), similar to the undi-

rected Hausdorff distance. Like the Hausdorff dis-
tance, the path-based distance is not symmetric,

i.e.,
−→
d (G0, G1) 6=

−→
d (G1, G0). This anti-symmetry

is desirable in our setting. For example, G1 can
be the reconstructed road network from bus route
data. In this case, the bus routes correspond to a
subgraph of the complete road network G0.

Our proposed distance measure is defined so that

if the directed distance
−→
d (G0, G1) is small, then for

any path p in G0 there exists a corresponding path
q in G1 such that the Fréchet distance between p
and q is small. From this property, we are able
to show that, under reasonable assumptions on G0

and for
−→
d (G0, G1) small enough, every vertex in

G0 has at least one naturally corresponding vertex
in G1 and every travel route defined in G0 has a
similar travel route in G1. Moreover, we are able
to give theoretical quality guarantees, and that can
approximate the distance in polynomial time.

2.3 Local Homology-Based Distance

Recently ([2]), we have defined a distance measure
between road networks that uses a concept called
local homology (this paper is currently in progress
and will be submitted to a conference in the near
future). For the sake of brevity in the current ex-
position, we refer the reader to [10] for the formal
definition of local homology, and to [6] for the def-
inition of persistent homology.

Letting r > 0 be fixed, we create a local signature
for every x ∈ D as follows. Let Bx be the ball of
radius r centered at x. We consider the distance
function f0 to G0. Let F0(t) denote the set of all
points in D that are distance at most t from G0.
The persistence module is the following sequence of
homology groups:

H1(F0(0), D −Bx)→ H1(F0(t1), D −Bx)→ . . .

. . .→ H1(F0(tn), D −Bx)→ H1(F0(r), D −Bx),

where ti are chosen to interleave the homological
critical values. In words, we are thickening G1 and
monitoring the homology of the thickened graph
restricted to Br, taken relative to ∂(Br). Let P0,x

be the resulting persistence diagram. We define
P1,x similarly.

We now use P1,x and P2,x to compare the local
topologies of G0 and G1 near x. We use the bottle-
neck distance d∞(P0,x,P1,x) (see [6, Ch. VIII]) as
a local distance between G0 and G1 at x, for every
x ∈ D.

This point-based distance can be used to visu-
alize the distance between two graphs, as demon-
strated in Figure 2, where we plot one map in gray
and the second map colored by the local distance,
with yellow indicating a small distance and red in-
dicating a large distance. We integrate this local
distance over X to obtain the fixed-radius local ho-
mology distance:

2



Figure 2: We see two road networks for an intersec-
tion in Athens, Greece. We plot one map in gray
and the second map is colored by the local distance
observed along that graph.

Definition 2.4 (LH Distance) The fixed-radius
local homology distance is:

dLH(G0, G1) =
1

|X|

∫
X
d∞(P0,x,P1,x) dx,

where |X| denotes the Lebesgue measure of X.

3 Conclusion

This abstract does not present an exhaustive list
of road network distance measures; see e.g. [9] for
another one. We have, however, briefly described
three distance measures that use the local connec-
tivity of the road networks, which we believe to be
necessary for the purpose of road network compar-
ison.

Since there are various reconstruction algo-
rithms, we may wish to determine which algorithm
is better than the others. To do so, we can choose
one of the distance measures above and evaluate
d(G0, Gi) for each reconstruction Gi. Perhaps we
could see a trend demonstrating a ranking of the
reconstruction algorithms if we do so. We are also
interested in understanding when one distance mea-
sure would be preferred over another.
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