

Introduction

- Minimum homotopy area between two simple curves has been defined by Chambers and Wang [1]. Here, we generalize it for closed curves and we give a method to compute it. Our method consists of the following two steps:
- We compute the minimum homotopy area for a class of closed curves, namely self-overlapping curves.
- We show that any closed curve can be devided into self-overlapping subcurves in such a way that the minimum homotopy area of the curve is the sum of the minimum homotopy areas of self-overlapping subcurves.

- A piecewise regular closed curve is a piecewise differentiable map $C: [0,1] \rightarrow \mathbb{R}^2$ such that C(0) = C(1) and the derivative C' never vanishes whenever it is defined. We denote [C] for the image of the map.
- A point $p \in [C]$ is called ordinary if the preimage $C^{-1}(p)$ consists of one point. A point $p \in [C]$ is called a simple crossing point if there exist exactly two points $t_1, t_2 \in [0,1]$ such that $p = C(t_1) = C(t_2)$ and if $C'(t_1)$ and $C'(t_2)$ are linearly independent. A piecewise regular closed curve C is called normal if there exist only a finite number of simple crossing points and all other points of [C] are ordinary.

A curve which is not normal.

- A homotopy H between two normal curves C_1 and C_2 sharing same end points can be considered as a sequence of three different moves, which we call Titus moves:
- Type 1: Destroying (I_a) or creating (I_b) a monogon.

• Since \mathbb{R}^2 is simply connected, any two closed curves with the same end points are homotopic to each other. In particular, any closed curve C is homotopic to the constant path p_0 where $p_0(t) = C(0)$ for all $t \in [0,1]$. A homotopy H between C_1 and C_2 is denoted by $C_1 \xrightarrow{H} C_2$. A I_a move takes a simple sub-loop of an intermediate curve and contracts it to a point in the plane. We call such points the anchor points of the homotopy.

On Minimum Area Homotopies Brittany Terese Fasy, Selcuk Karakoc, Carola Wenk

Homotopy Area and Winding Area of a Closed Curve

• Let wn(x,C) be the winding number of the curve C at a point x in the plane. We define the winding area W(C)of *C* as follows:

$$W(C) = \int_{\mathbb{R}^2} |wn(x)|^2 dx$$

- Let $C_1 \xrightarrow{H} C_2$ be a homotopy and $E_H(x)$ be the number of connected components of $H^{-1}(x)$ for a point x in the plane. We define the area of the homotopy as follows:

$$Area(H) = \int_{\mathbb{R}^2} E$$

- We define the minimum homotopy area of C_1 and C_2 as the infimum of the areas over all possible homotopies between them. We denote it by $\sigma(C_1, C_2)$. In other words: $\sigma(C_1, C_2) = \inf_{H} Area(H)$
- We also define $\sigma(C) = \sigma(C, p_0)$. A homotopy that realizes the above infimum is called a minimum homotopy.

- The sequence of Titus moves in this figure comprises a minimum homotopy of C. We refer to this curve as the red curve. For the red curve, we have;
 - $\sigma(C) = W(C) = 3 \operatorname{Area}(R_3) + 2 \operatorname{Area}(R_2) + \operatorname{Area}(R_1) + \operatorname{Area}(R_4) + \operatorname{Area}(R_5)$
- For some curves, homotopy area and the winding area are equal; see the red curve above.

For an arbitrary curve, we have the following lemma:

Lemma: For any normal curve, we have $\sigma(C) > W(C)$.

• Notice that minimum homotopy area between two curves C_1 and C_2 is zero if and only if they have the same image, i.e. $[C_1] = [C_2]$. Obviously, it is symmetric, $\sigma(C_1, C_2) = \sigma(C_2, C_1)$. It also satisfies the triangular inequality. Hence, the minimum homotopy area defines a metric on the space of normal curves with a fixed end point under the equivalence realtion where two curves are equal if and only if they have the same image.

(x, C)|dx|

Consider the curve on the left. We have: • wn(x,C) = 0 for $x \in R_0$ • wn(x,C) = 1 for $x \in R_1$ • wn(x,C) = 2 for $x \in R_2$ Hence, $W(C) = 2Area(R_2) + Area(R_1)$

 $C_H(x) dx$

We refer the curve on the left as the blue curve. For the blue curve, we have;

 $\sigma(C) = 2Area(R_2) + 2Area(R_3) + Area(R_1) > W(C) = 2Area(R_2) + Area(R_1)$

Self-Overlapping Curves and the Main Theorem

theorem:

Theorem: If *C* is self-overlapping, then $\sigma(C) = W(C)$. Detecting whether a given curve is self-overlapping or not can be done in polynomial time [2].

Theorem: Let C be a normal curve. Then, there exists a minimum homotopy H which defines a sequence of curves $C = C_0 \rightarrow C_1 \rightarrow \ldots \rightarrow C_m = p_0$ such that each $C_i \rightarrow C_{i+1}$ is a contraction of a self-overlapping subcurve of C_i based at a simple crossing point of C_i .

- Proof (Sketch):

• Testing all possible sequences of intersection points as anchor points yields an exponential-time algorithm. We are currently working on using dynamic programming to obtain a polynomial-time algorithm.

References: [1] Chambers, E., and Wang, Y. Measuring similarity between curves on 2-manifolds via homotopy area. In SoCG (2013), pp. 425-434. [2] Shor, P., and Van Wyk, C. Detecting and decomposing self-overlapping curves. CGTA 2, 1 (1992), 31-50.

Research reported in this poster was supported by NSF grant CCF-1301911.

• A normal curve C is called self-overlapping if there exists an immersion of the disk $F: D^2 \to \mathbb{R}^2$ such that $F|_{\partial D^2} = [C]$. The red curve is an example of a self-overlapping curve, whereas the blue curve is an example of a non-self-overlapping curve. Self-overlapping curves have consistent winding numbers. In other words, winding numbers are all non-negative or all non-positive for each point in the plane. Furthermore, we have the following

Now, we state our main theorem.

We show that for each normal curve there exists a minimum area homotopy that does not require I_b moves, and any II_b move does not create anchor points. Furthermore, if these homotopies are carefully constructed, the anchor points will be a subset of the simple crossing points of the curve. And since a minimum homotopy is locally sense-preserving, these anchor points define self-overlapping pieces of the curve.

• In the figure below, we demonstrate our theorem by first subdividing a curve into three self-overlapping sub-curves (top left). This decomposition is not unique, but one such subdivision will realize the minimum homotopy. We illustrate one minimum homotopy.

