On Minimum Area Homotopies
Brittany Terese Fasy, Selcuk Karakoc, Carola Wenk

Introduction

- Minimum homotopy area between two simple curves has been defined by Chambers and Wang [1]. Here, we generalize it for closed curves and we give a method to compute it. Our method consists of the following two steps:
 - We compute the minimum homotopy area for a class of closed curves, namely self-overlapping curves.
 - We show that any closed curve can be divided into self-overlapping subcurves in such a way that the minimum homotopy area of the curve is the sum of the minimum homotopy areas of self-overlapping subcurves.

Normal Curves and Titus Moves

- A piecewise regular closed curve is a piecewise differentiable map \(C : [0, 1] \to \mathbb{R}^2 \) such that \(C(0) = C(1) \) and the derivative \(C' \) never vanishes whenever it is defined. We denote \(C' \) for the image of the map.
- A point \(x \in \mathbb{R}^2 \) is called ordinary if the preimage \(x^{-1}(x) \) consists of one point. A point \(x \in \mathbb{R}^2 \) is called a simple crossing point if there exist exactly two points \(t, s, t < s \) such that \(x = C(t) = C(s) \) and \(C'(t), C'(s) \) are linearly independent. A piecewise regular closed curve \(C \) is called normal if there exist only a finite number of simple crossing points and all other points of \(C \) are ordinary.

Homotopy Area and Winding Area of a Closed Curve

- Let \(\nu_C(x) \) be the winding number of the curve \(C \) at a point \(x \) in the plane. We define the winding area \(W(C) \) of \(C \) as follows:

\[
W(C) = \int_{x \in \mathbb{R}^2} \nu_C(x) \, dx
\]

Consider the curve on the left. We have:
- \(\nu_C(x) = 0 \) for \(x \in R_3 \)
- \(\nu_C(x) = 1 \) for \(x \in R_1 \)
- \(\nu_C(x) = 2 \) for \(x \in R_2 \)

Hence, \(W(C) = 2 \cdot \text{Area}(R_2) - \text{Area}(R_1) \)

- Let \(G_1, G_2 \) be a homotopy and \(E_G(x) \) be the number of connected components of \(G \), then we have:

\[
\text{Area}(H) = \int_{x \in \mathbb{R}^2} E_G(x) \, dx
\]

We define the minimum homotopy area of \(G_1 \) and \(G_2 \) as the infimum of the areas over all possible homotopies as follows:

\[
\text{Area}(H) = \inf \left\{ \int_{x \in \mathbb{R}^2} E_G(x) \, dx \right\}
\]

We also define \(r(C) = r(C, p_0) \). A homotopy that realizes the above infimum is called a minimum homotopy.

- The sequence of Titus moves in this figure comprises a minimum homotopy of \(C \). We refer to this curve as the red curve. For the red curve, we have:

\[
r(C) = W(C) = 3 \cdot \text{Area}(R_3) + 2 \cdot \text{Area}(R_2) + \text{Area}(R_1) + \text{Area}(R_0)
\]

- For some curves, homotopy area and the winding area are equal; see the red curve above.

\[
r(C) = W(C) = 3 \cdot \text{Area}(R_3) + 2 \cdot \text{Area}(R_2) + \text{Area}(R_0) > W(C) = 2 \cdot \text{Area}(R_2) + \text{Area}(R_1)
\]

For an arbitrary curve, we have the following lemma:

Lemma: For any normal curve, we have \(r(C) \geq W(C) \).

Self-Overlapping Curves and the Main Theorem

- A normal curve \(C \) is called self-overlapping if there exists an immersion of the disk \(D^2 \) into \(\mathbb{R}^2 \) such that \(\gamma(D^2) = \{ C \} \). The red curve is an example of a self-overlapping curve, whereas the blue curve is an example of a non-self-overlapping curve. Self-overlapping curves have consistent winding numbers. In other words, winding numbers are all non-negative or all non-positive for each point in the plane. Furthermore, we have the following theorem:

Theorem: If \(C \) is self-overlapping, then \(r(C) = W(C) \).

- Detecting whether a given curve is self-overlapping or not can be done in polynomial time [2].

- Now, we state our main theorem.

Theorem: Let \(C \) be a normal curve. Then, there exists a minimum homotopy \(H \) which defines a sequence of curves \(C_0 = C_1 = \ldots = C_n = p_0 \) such that each \(C_i \to C_{i+1} \) is in a contraction of a self-overlapping subcurve of \(C_i \) based at a simple crossing point of \(C_i \).

Proof (Sketch): We show that for each normal curve there exists a minimum area homotopy that does not require \(I_3 \) moves, and any \(I_4 \) move does not create anchor points. Furthermore, if these homotopies are carefully constructed, the anchor points will be a subset of the simple crossing points of the curve. And since a minimum homotopy is locally sense-preserving, these anchor points define self-overlapping pieces of the curve.

- In the figure below, we demonstrate our theorem by first subdividing a curve into three self-overlapping sub-curves (top left). This decomposition is not unique, but one such subdivision will realize the minimum homotopy. We illustrate one minimum homotopy.

Research reported in this poster was supported by NSF grant CCF-1301911.

References: