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A Middle Curve Based on Discrete Fréchet Distance®
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Abstract

Given a set of polygonal curves we seek to find a “mid-
dle curve” that represents the set of curves. We ask
that the middle curve consists of points of the input
curves and that it minimizes the discrete Fréchet dis-
tance to the input curves. We develop algorithms for
three different variants of this problem.

1 Introduction

Consider a group of animals or people traveling to-
gether, several of which are GPS-tagged. Based on
their trajectories, i.e., sequences of time-stamped po-
sitions, we want to compute a representation of a mid-
dle path taken by the group. Because sampled lo-
cations are more reliable than positions interpolated
in between those, we seek a middle path consisting
only of sampled locations. The middle path should
be as close as possible to the path of the individuals,
hence we ask for it to minimize the discrete Fréchet
distance to these. The Fréchet distance [2] and the
discrete Fréchet distance [4] are well-known distance
measures, which have been used before in trajectory
analysis.

We consider three variants of this problem, which
we introduce now more formally for two curves. Given
two point sequences P and @, of length n and m re-
spectively, and € > 0, we wish to determine whether
there exists a middle curve R consisting of points from
P U Q with max(dp(R, P),dr(R,Q)) < €, where dp
denotes the discrete Fréchet distance.

In the following definitions we assume that each
point in R uniquely corresponds to a point in P or
Q@ (in particular, if P and @ share points). We say
the middle curve R is ordered, if any two points of P
occurring in R have the same order as in P, likewise
with points from Q. We say the middle curve R is
restricted, if points on R are mapped to themselves
in a matching realizing the discrete Fréchet distance.
That is, consider a point p in R originating from P;
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In a matching between R and P realizing dr(R, P),
p as a point of R is mapped to itself on P.

Figure 1: Example of a middle curve R of curves P, Q.

Related work. Several papers [3, 5] study the problem
of finding a middle curve but without the restriction
that the middle curve should consist of points of the
input curves. Buchin et al. [3] restrict to use parts
of edges of the input, and the aim is to always “stay
in the middle” in the sense of a median. Har-Peled
and Raichel [5] show that without any restrictions on
the middle curve (i.e., neither using input vertices nor
edges), a curve minimizing the Fréchet distance to k
input curves can be computed in the k-dimensional
free space using the radius of the smallest enclosing
disk as “distance”.

2-Approximation. A simple observation is that choos-
ing any of the input curves is a 2-approximation to
minimizing the distance (using the triangle inequal-
ity). Thus, we have a 2-approximation in constant
time (not counting the time to output the points of
the curve). Also, it is easy to give an example showing
that this 2-approximation is tight.

Results. We develop algorithms for three variants of
this problem (runtime for k£ > 2 curves of size at most
n each):

1. An O(n*4n2logn) time algorithm for computing
an unordered middle curve,

2. An O(n?F) time algorithm for computing an or-
dered middle curve,

3. An O(n* log"™! n) time algorithm for computing
an ordered and restricted middle curve.

In the following, we will also call these three cases
the “unordered, ordered, and restricted case”. In the
following sections, we present these algorithms. Due
to space restrictions, we focus on describing the algo-
rithms, omitting details and proofs.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Algorithm for the unordered case

To solve the decision problem for the unordered case,
we modify the algorithm for computing the discrete
Fréchet distance of two curves [4] as follows. We
search again for a path in the free space matrix. Now
(in contrast to the original algorithm) we color a ver-
tex (i, 7) free iff there exists any vertex v from P or @
such that v has distance < e to both p; and ¢;. Then
again we search for a monotone path in the free space
matrix. For the computation problem, we label each
vertex (4,7) with min,epug max(||v — pill, |lv — g;l)),
and search for a path minimizing the maximum label.

The runtime for searching the grid is (in both cases)
O(mn). To compute the vertex labels (0|1 or dis-
tances) takes O(mn(m+n)) time brute-force (i.e., for
each vertex (i, ) test all (m + n) possibilities for v in
O(1) time). For k curves of length at most n this takes
O(kn*+1)) time in total. Next, we describe how to do
this more efficiently. Here, we use a circular sweep to
determine for each point p all points ¢ such that (p, q)
is free, i.e., there is some point v of P or () which has
distance < ¢ to both p and q.

Constructing the free space matrix. For any p € P:

1. Determine all disks of radius € around points in
P U Q that contain p.

2. Determine the union U of those disks. This can
be done by divide-and-conquer as follows: Since
U is star-shaped its boundary 9U is a sequence of
circular arcs with vertices in between. We main-
tain the rays from p to these vertices sorted clock-
wise, say. Then it is easy to merge two bound-
aries of unions of n/2 disks into one of n disks.

3. Sort all points of (Q around p in a clockwise fash-
ion and merge them with the vertices of OU.

4. Perform a circular sweep around p with the points
of @ and the vertices of OU as event points. Dur-
ing the sweep, compare each point ¢ € Q) encoun-
tered with the intersection point of the ray with
the current circular arc of QU. Thus, it can be
determined whether ¢ is also in U. If so, mark
the entry (p, ¢) in the free space matrix as “free”.

Correctness. For the correctness of the algorithm,
observe that for any pair (p,q) chosen in step 4 it
must be true that ¢ lies in one of the disks which
contain p, and vice versa.

Runtime. One execution of step 1 takes time O(m +
n). In step 2, the complexity of U is O(n), see,
e.g., [1]. The merging can be done in linear time, so
the divide-and-conquer algorithm takes time O((m +
n)log(m + n)). Step 3 takes time O(mlogm) for
the sorting and O(m + n) for the merging. Step 4
takes linear time. Since these steps are carried out

for each point p € P the total runtime for setting
up the free space matrix is O(n(m + n)log(m + n)).
Since the roles of P and @ can be exchanged we
can achieve O(min(m,n)(m + n)log(m + n)) which
is O(mnlog(mn)).

Output a middle curve. If in addition to a yes-answer
for the decision problem also a covering sequence it-
self is wanted, each circular segment of OU should be
labeled with the center point of its circle. This label
is also entered into the free space matrix so that the
sequence of labels of a monotone path gives a feasible
unordered sequence for the middle curve.

Optimization problem. Solving the optimization
problem can again be done by a binary search on the
set of distances between pairs of points from P U @
involving in each step the algorithm for the decision
problem. This results in a O(mn log® mn) runtime.

Several curves. The decision algorithm can be ex-
tended to k curves P, ..., Pk, Then, having the outer
loop for all points p € P!, say, in step 4 we determine
which points ps € P% ... pr € P¥ lie inside U, as
well. For all combinations p, pa, ..., pr the correspond-
ing entries in the k-dimensional free space matrix are
marked as free. The runtime is O(niNlog N + M)
where N = Zle n; and M = Hle n;, which is only
a minor improvement over the brute force algorithm
with run time O(N(N + M)).

3 Dynamic programming for the ordered case

Now we present a dynamic programming algorithm
for computing an ordered middle curve. As input we
assume two sequences P, () and we search for an or-
dered middle curve R. Let us denote by P;,1 <1 < mn,
the “prefix” (p1,...,p;) of a sequence P = (p1, ..., pn).
Py is defined as the empty sequence.

Our dynamic programming algorithm operates
with four-dimensional Boolean arrays of the form
X[i,j,k,0,0 < ik < n,0 < 4,1 < m, where
X|i, j,k,1] is true iff there exists an ordered sequence
R from points in P; U Q; with

max(dr(R, Py),dr(R, Q1)) < e.

We say in this case that R covers P, and Q.
Clearly, the decision problem has a positive answer
iff X[n,m,n,m] (or any X[i,j,n,m]) is true.

In order to determine the value of some X[i, j, k, (]
from entries of X with lower indices, we need more
information, particularly, whether there is a covering
sequence R in which the points p; and g; occur, and if
they do, whether they occur in the interior or at the
end of the sequence. To this end, the array X is the
componentwise disjunction of seven Boolean arrays

X=AvVBVCVDVEVFVG
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with the meanings that a sequence R covering P, and
Q) exists with the following properties, respectively:

Ali, j, k,l]: R contains neither p; nor g;.

Bli, j, k,1]: R contains p; in its interior but does not
contain g;.

Cli,j,k,1]: R ends in p; but does not contain g;.

Dl[i,j,k,l]: R contains g; in its interior but does not
contain p;.

Eli,j,k,1]: R ends in ¢; but does not contain p;.
Fi,j,k,1]: R contains g; in its interior and ends in p;.
Gli,j,k,1]: R contains p; in its interior and ends in g;.

Observe that R cannot contain both, p; and g;, in its
interior (i.e. not at the end).

The entries of the arrays can be initialized or
computed from entries with lower indices because of
the following identities, which hold for each index
i,7,k,1 > 1, if that index minus 1 occurs in the for-
mula and for all indices > 0 otherwise.

AJ0,0,0,0] = true
AJO, O,kl] = falsefork>1lorl>1
Ali,0,k,1] = X[i—1,0,k]
Al0,5, k1] = X[0,5 -1,k
Ali, 5, k1] = X[i—1,7—1,k]]
B[i,0,k,l]] = B|0,j,k,l] = false
Bli,j, k1] = Gli,j—1,k,1]V B[i,j —1,k,]]

The first equality is correct, since p; must be at the
end of R if no points from @ are available. In the
second equality, G[i,j — 1,k,[] accounts for the case
that R contains g;_1 (which then must be at the end)
and Bl[i,j — 1, k, ] for the case that it does not.

In the following, let cl(p,q) for points p and ¢ de-
note the truth value for ||p — ¢|| < e. These can be
determined for all pairs of points in P U @ by pre-
processing. The following equalities for C[, j, k, [] are
obtained by case distinction whether the final point p;
in the sequence R covers only pi and g; or also other
points occurring previously in the sequences Py and
Q1, respectively.

Cli,4,0,l] = Cli,j,k,0] = C[0,5,k,l]] = false
C[Z7J7k7l] = Cl(pz»pk) e (meIl) A
(Alé, j, k= 1,1 =11V C[i, 4,k — 1,1 — 1]
v Cli,j, k= 1,1V C[i, j, k, 1 — 1))

The entries of D and E can be determined analo-
gously to the ones of B and C' with the roles of p;
and ¢; exchanged. The identities of F' have similar
explanations as the ones of C"

0,5, k1] = F[i,0,k,1] = F[i,},0,1]
= Fli,j,k,0] = false

F[Z7.7>k7l] = CZ(pivpk) /\Cl(pi,Ql)/\
(D[i,j, k— 1,1 =1V E[i, 5,k — 1,1 — 1]
\ F[Z7]ak - lal] \/F[Zm]a kvl - 1])
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The entries of G can be determined analogously to
the ones of F' with the roles of p; and ¢; exchanged.

Runtime. The dynamic programm runs in time
O(n?m?) which is the size of each of the eight arrays.

Output a middle curve. Not only the existence of
a covering sequence R, but R itself can be computed
by setting a pointer for each array entry of the form
Yi, j, k,1], which is set to true, to the 4-tupel(s) of
indices at the right hand side of an equality that has
made it true. Note that there can be an exponential
number of valid middle curves.

Optimization problem. The value of max(dr(R, P),
drp(R,Q)) must be one of the distances between two
points in PU Q. Therefore, the optimization problem
can be solved by determining these distances, sort-
ing them, and finding the correct value by binary
search, invoking in each step the decision algorithm
with the current value of €. Altogether, this takes
time O(n?m?log(n +m)).

Several Curves. The decision (and optimization) al-
gorithm can be generalized to k sequences P!, ..., P*.
The runtime in this case is O(n?...n?) for constant k

(but the number of arrays is 2F~1(k +2) — 1).

4 Algorithm for the Restricted Case

Now the reparameterizations for minimizing
max(dp(R, P),dr(R,Q)) are restricted to map
every vertex of R to itself in the input curve it
originated from. This case allows for a more efficient
dynamic program.

For this, we define arrays akin to Section 3. Let
X[i, 41,0 < i <n,0 <j<m, be true iff there exists
an ordered sequence R from points in F; U Q; with

max(dp(R, P,),dr(R,Q;)) <

with the restriction that any vertex of R is mapped
to itself in the input curve it originated from. We
say in this case that R restrictively covers P; and Q.
Clearly, the decision problem has a positive answer iff
X[n,m] is true.

Akin to Section 3 we can write X as a disjunction
of three Boolean arrays

X=AVvCVE

with the meanings that a sequence R covering P; and
Q; exists with the following properties!, respectively:

Ali, j]: R contains neither p; nor g;
Ci,j]: R ends in p; (and may or may not contain g¢;)

El[i,j]: R ends in g; (and may or may not contain p;)

Inote that C here combines C and F in Section 3, and F
combines E and G in Section 3
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First we observe that

Afi,jl & 34 < i and j' < j such that (C[¢/, 5] A
(i,7) € Up(@', ) V (B[, 5T A (i, ) € Ug(i', 57))

Cli,j] © cl(pi,q;) A there exist i/ < ¢ and j' < j
such that X[i’',j'] A (¢,5') € Lp(i, )

Eli,j| < cl(pi,q;) A there exist i/ < i and j' < j
such that X[i', '] A (', ") € Lo(4,7)

Here, the upper right wedge Up(i', j') and the lower
left wedge Lp(i',j’) represent subsets of point pairs
(ps, q;) for which p; and g¢; are both close to p. The
upper right wedge consists of the connected set of such
close point index pairs (i, ) for which ¢ <4, 5/ < j,
and the set contains (¢',j'). The lower left wedge
consists of the connected set of such close point index
pairs (i, ) for which ¢ <4, j < j', and the point set
contains (7', j).

Finally, we define the extended lower left wedge
ﬁp(i’,j’) which, in addition to all points in the lower
left wedge Lp(i’, ') also contains the points (i, 7) im-
mediately to the left or below, i.e., for which (i +1, j),
(i,7+1),or (i+1,541) is contained in Lp(i’, j’). The
definition of Ug(i',5"), Lqo(i,j"), Lo(i,§') is analo-
gous, consisting of point pairs (p;, ;) for which p;
and g; are both close to g;.

We compute X by incrementally adding true points
using an enhanced bottom-up dynamic programming.
In addition to storing the (m + 1) x (n + 1)-array
X, we also store the upper envelope X of all true
points in X as a 1D array indexed by ¢. This will
allow us to efficiently add reachable points to X. More
specifically, we define X[i] = max{j| X[, j] = true}.
Note that X as well as X change during the dynamic
programming, as more and more true points get added
to X.

First, initialize all X[é,j] to false, except for
X[0,0] which is set to true. Initialize X[0] = 0, and
X[i] = —1 for all i > 0.

Then, for ¢ = 1 to m, and for j = 1 to n, compute
X[i, 7] (and update X) as follows:

o If X[i,j] A cl(pi,q;): Add Up(i,7) and Ugq(s, j)
to X, together with a pointer to (i,j) that is
labeled P or @ accordingly. An upper wedge is
added to X by locating it in X, updating the
points in X that are above X by setting them
to true, and finally updating X. We refer to
this as updating X and X with the wedge. This
takes time proportional to the number of points
updated.

o If = XTi, j] A cl(pi,g;): If f/p(i,j) intersects X,
update X and X with Lp(i,5) and Up(i, j), and
if Lo(i,j) intersects X, update X and X with
Lg(i,j) and Uq(i, 7). Also update pointers la-
beled with P or ) accordingly. The check can

be done in constant time, and the update takes
time proportional to the number of new points
updated.

Correctness. For the correctness of the algorithm ob-
serve that if X[i, j] holds because of A[i, j], then it is
marked when the last point of a covering is processed.
If X[i, 7] holds by C[i, j] or E[i, j], then this is handled
in the =XTi, ] A cl(pi, ¢;) case of the algorithm.

Runtime. By storing X in a binary search tree the
algorithm runs in time O(mnlog(min(m,n))). For
this, store X in a binary search tree sorted on 4 and
augmented by the minimum value X[i] in a subtree
rooted at a node. A rectangle with corners (i, ) and
(u,r) can be queried by following the two paths to i
and u. In between those paths process all subtrees
with minimum smaller than r. Updating the values
for X[i] and the minimum of these takes logarithmic
time as well. Thus, it takes at most logarithmic time
both to mark and to process an entry of X.

Several Curves. For k > 2 curves the algorithm works
the same with a k — 1 dimensional range tree for X,
and runtime O(n*log"~' n).
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