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Abstract—  The goal of the recently emerged field of connectomics 
is to generate a wiring diagram of the brain at different scales. 
To identify brain circuitry, neuroscientists use specialized 
microscopes to perform multichannel imaging of labeled neurons 
at a very high resolution. CLARITY tissue clearing allows 
imaging labeled circuits through entire tissue blocks, without the 
need for tissue sectioning and section-to-section alignment. 
Imaging the large and complex non-human primate brain with 
sufficient resolution to identify and disambiguate between axons, 
in particular, produces massive data, creating great 
computational challenges to the study of neural circuits. 
Researchers require novel software capabilities for compiling, 
stitching, and visualizing large imagery. In this work, we detail 
the image acquisition process and a hierarchical streaming 
platform, ViSUS, that enables interactive visualization of these 
massive multi-volume datasets using a standard desktop 
computer. The ViSUS visualization framework has previously 
been shown to be suitable for 3D combustion simulation, climate 
simulation and visualization of large scale panoramic images. 
The platform is organized around a hierarchical cache oblivious 
data layout, called the IDX file format, which enables interactive 
visualization and exploration in ViSUS, scaling to the largest 3D 
images.  In this paper we showcase the VISUS framework used in 
an interactive setting with the microscopy data. 
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I.   INTRODUCTION 
To date, only a few neuronal circuits have been analyzed 

comprehensively– the connectivity map of the 302 neurons 
comprising the entire nervous system of the nematode 
caenorhabditis elegans being the most notable [6]. While 
current efforts are being focused on mapping the mouse brain 
[1] [2], mapping the non-human primate (NHP) brain is rapidly 
becoming a feasible goal. In particular, the emergence of viral-
vector mediated high-resolution fluorescent labeling of neural 
circuits [3], optical tissue clearing techniques [4], and deep 
tissue imaging [5] have made it possible to characterize NHP 
brain wiring at cellular resolution. Understanding human brain 
function and how neurological and psychiatric diseases affect 
the brain are just a few fields that would immensely benefit 
from primate brain maps.  

In order to effectively resolve and visualize individual 
fluorescently labeled axons using 2-photon (2P) or confocal 
microscopy (axons frequently cross and overlap each other 

closely through the NHP cortex-see Figure 7(c)), a minimum 
resolution of 20-40x magnification in the x- and y-planes 
combined with a z-axis step size of 0.25-1.0 microns between 
imaging planes is necessary.  At these magnifications and z-
resolutions one can unambiguously identify continuous 
neuronal projections and the axonal and dendritic protrusions 
along them, which identify synaptic points of contact with 
other cells.  While these acquisition parameters allow 
neuroscientists enough image detail to map brain connectomes, 
they come at the cost of creating immense amounts of data. In 
our own 2-photon microscope acquisitions we have found that 
each 2048x2048 tiff image (8.6MB), which captures a brain 
area of approximately 0.2 by 0.2 mm2, provides sufficient 
image quality for NHP connectome data analysis. Using these 
parameters to image a tissue block the size of a single macaque 
monkey cortical area, the primary visual cortex (≈6,000mm3), 
would generate approximately 320TB of image data [9], 
making it nearly impossible to visualize, let alone interact with, 
the acquired data in its original format. 

Traditional 3D visualization tools [10-13] fail to scale when 
dataset sizes are in the order of several terabytes, resulting in a 
need for a scalable, high performant software platform that is 
specifically designed to addresses the big data challenges of 
neuroscience. In this paper we describe in detail ViSUS, a 
scalable data analysis and visualization framework for large 
scale scientific data processing with high performance selective 
queries. ViSUS Software architecture consists of three major 
components. First, a lightweight and a fast out-of-core data 
management framework designed to organize data in an order 
that exploits the cache hierarchies of many modern data storage 
architectures. Second, an efficient dataflow framework that 
allows data to be processed during movement. Third, a portable 
visualization layer that is designed to scale from mobile 
devices to powerwall displays with the same code base. These 
specialized components enable ViSUS to achieve a fast, 
scalable, and highly portable data processing and visualization 
environment suitable for exploration and analysis of big data in 
various fields. In the following sections, we describe the 
ViSUS software architecture and show how ViSUS is useful in 
analyzing terascale microscopy images. 

II.   VISUS SOFTWARE ARCHITECTURE 
To provide context, a typical visualization and analysis 

pipeline is illustrated in Figure 1. We assume that raw data 
from experiments are available as real-valued, regular samples  



 

 
Figure 1. In a traditional out-of-core visualization pipeline 
where raw data does not fit into memory, the data is often re-
ordered to match the capabilities of the rendering engine, for 
instance, re-ordered into smaller bricks that fit onto GPUs. The 
hierarchical z-ordered data layout is an integral part of ViSUS 
platform, and fits into this pipeline. In each case, further 
analysis, such as feature identification and statistical analysis, 
often operates on the same data layouts.  

of space, possibly varying in time. Due to the large size of 
datasets, we emphasize that the data samples cannot all be 
loaded into the main memory. As a result, it is not feasible to 
use standard implementations of visualization and analysis 
algorithms on commodity hardware. Figure 2 provides an 
overview of the software architecture of the ViSUS application 
framework that we describe next.  

Data Access Layer:  To achieve data access patterns 
having minimal performance degradation with external 
memory storage, it is essential to address the issues of data 
layout restructuring and algorithm redesign. The ViSUS I/O 
component (and its generalized database component), in 
particular focuses on enabling the effective deployment of out-
of-core and data streaming algorithms. Algorithmic approaches 
in this area also yield valuable techniques for parallel and 
distributed computing.  The solution to the out-of-core 
processing problem is typically divided into two parts: (1) 
algorithm analysis, to understand data access patterns and, 
when possible, redesign to maximize data locality; (2) storage 
of data in secondary memory using a layout consistent with the 
access patterns of the algorithm, amortizing the cost of 
individual I/O operations over several memory access 
operations. 

To achieve real-time rates for visualization and/or analysis 
of extreme scale data, one would commonly seek some form of 
adaptive level of detail and/or data streaming. By traversing 
image data hierarchically from the coarse to the fine 
resolutions and progressively updating output data structures 
derived from this data, one can provide a framework that 
allows for real-time access of the data that performs well, even 
at extreme scale. To maintain efficiency, a storage data layout 
must satisfy two general requirements: (i) the input hierarchy is 
traversed from coarse to fine and level by level, so that data in 
the same level of resolution is accessed at the same time, and 
(ii) within each resolution level, the regions that are in close 
geometric proximity are stored as much as possible in close 
memory locations and also traversed at the same time. 

In the past, space filling curves [14] have been used 
successfully to develop a static indexing scheme that generates 
a data layout satisfying both of the above requirements for 
hierarchical traversal (Figure 4). The data access layer of 
ViSUS employs a hierarchical variant of a Lebesgue space 
filling curve [15]. The data layout of this curve is commonly 
referred to as HZ order in the literature. This data access layer 
has three key features that make it particularly attractive. First, 
the order of the data is independent of the out-of-core block 
structure, so that its use in different settings (e.g. local disk 
access or transmission over a network) does not require any 
large data reorganization. Second, conversion from the Z-order 
indexing [16] used in classical database approaches to the 
ViSUS HZ-order indexing scheme can be implemented with a 
simple sequence of bit-string manipulations. Third, since there 
is no data replication, ViSUS avoids the performance penalties 
associated with guaranteeing consistency especially for 
dynamic updates. From our test data, we have found that there 
is only a 27% overhead due to the conversion compared to just 
copying the raw data which makes this conversion very light. 
Conversion of large images into the ViSUS format requires no 
additional storage, compared to the typical 1/3 data increase 
common for typical tiled image hierarchies. The conversion 
requires no operations on the pixel data and will outperform 
even the simplest tiled hierarchies, which require some 
manipulation of the pixel data. 

Beyond the theoretical interest in developing hierarchical 
indexing schemes for n dimensional space filling curves, 
ViSUS targets practical applications in out-of-core data 
analysis and visualization and has been successfully used for 
direct streaming and real-time remote monitoring of large scale 
simulations during their executions on IBM BG/L 
supercomputers at LLNL [17] as well as on Hopper 
supercomputer at NERSC [18]. The multi-resolution data 
model used in ViSUS allows adjusting the quality of the 
visualization depending on the communication speed and on 
the performance of the local workstation. Owing to the 
extremely scalable nature of this approach, the same code base 
is used for a large set of applications while exploiting a wide 
range of available devices from large power-wall displays to 
workstations, laptop computers or handheld devices.  

Z & HZ ordering: In the two-dimensional case, the Z-
order curve can be defined recursively by a Z shape whose 
vertices are replaced by Z shapes half its size (see Figure 4(a-
e)). Given the binary row-major index of a pixel (in…i1i0; 
jn…j1j0) the corresponding Z-order index I is computed by 
interleaving the indices I = jnin…j1i1j0i0 (see Figure 3 (a) step 
1). While Z-order exhibits good locality in all dimensions, it 
does so only at full resolution and does not support hierarchical 
access. Instead, ViSUS uses the hierarchical variant, called the 
HZ-order. This new index changes the standard Z-order to be 
organized by levels corresponding to a subsampling binary 
tree, in which each level doubles the number of points in one 
dimension (see Figure 3 (b)). This pixel order is computed by 
adding a second step to the index conversion. To compute an 
HZ-order index 𝐼, the binary representation of a given Z-order 
index I is shifted to the right until the first 1-bit exits. During 
the first shift, a 1-bit is added to the left and 0-bits are added in 
all following shifts (see Figure 3 (a)). This conversion could  



 
Figure 2. The ViSUS application framework. Arrows denote external and internal dependencies of the main software components. 
Additionally we show the relationship with several applications that have been successfully developed using this framework.

have a potentially very simple and efficient hardware 
implementation. 

IDX Data format: ViSUS sorts the original data in an HZ-
order and groups consecutive samples in blocks of constant 
size. A sequence of consecutive blocks is grouped into a record 
and records are clustered in groups, which are organized 
hierarchically. Each record has a header specifying which of its 
blocks are actually present and if the data are stored raw or 
compressed. Groups can miss entire records or subgroups, 
implying that all their respective blocks and records are 
missing. The file format is implemented via a header file 
describing the various parameters (dimension, block size, 
record size, etc.) and one file per record. The hierarchy of 
groups is implemented as a hierarchy of directories each 
containing a predetermined maximum number of 
subdirectories. The leaves of each directory contain only 
records. To open a file, one needs only to reconstruct the path 
of a record and defer its search to the file system. In particular, 
the path of a record is constructed as follows: we take the HZ-
address of the first sample in the record, represent it as a string,  
and partition it into chunks of characters naming directories, 
subdirectories, and the record file. Note that, since blocks, 
records and groups can be missing, one is not restricted to 
arrays of data that cover the entire index space. In fact, we can 
easily store even images with different regions sampled at 
different resolutions. 

Efficient Multiresolution Range Queries: One of the key 
components of ViSUS is the ability to quickly extract 
rectangular subsets of the input image in a progressive manner. 
Computing the row-major indices of all samples residing 
within a given query box is straightforward. However, 
efficiently calculating their corresponding HZ-indices is not. 
Transforming each address individually results in a large 
number of redundant computations by repeatedly converting 
similar indices. To avoid this overhead, we introduce a 
recursive access scheme that traverses an image in HZ-order, 
while concurrently computing the corresponding row-major 

indices. This traversal implicitly follows a kd-tree style 
subdivision, allowing us to quickly skip large portions of the 
image. To better illustrate the algorithm we will first describe 
how to recursively traverse an array in plain Z-order. 
Subsequently, we will discuss how to restrict the traversal to a 
given query rectangle and finally, how the scheme is adapted to 
HZ-order. We use a stack containing tuples of type 
(split_dimension, I_start, min_i, max_i, min_j, max_j, 
num_elements). To start the process, we push the tuple t0 = 
(1,0,0,3,0,3,16) onto the stack. At each iteration we pop the 
top-most element t from the stack. If t contains only a single 
element we output the current I_start as HZ-index and fetch 
the corresponding sample. Otherwise, we split the region 
represented by t into two pieces along the axis given by split 
dimension and create the corresponding tuples t1 = 
(0,0,0,3,0,1,8) and t2 = (0,8,0,3,2,3,8). Note that all elements 
of t1 and t2 can be computed from t by simple bit 
manipulation. In case of a square array, we simply flip the split 
dimension each time a tuple is split. However, one can also 
store a specific split order to accommodate rectangular arrays.  

To use this algorithm for fast range queries, each tuple is 
tested against the query box as it comes of the stack and 
discarded if no overlap exists. Since the row-major indices 
describing the bounding box of each tuple are computed 
concurrently, the intersection test is straightforward. 
Furthermore, the scheme applies, virtually unchanged, to 
traverse samples in Z-order that sub-sample an array uniformly 
along each axis, where the sub-sampling rate along each axis 
could be different. Finally, to adapt the algorithm to HZ-order 
(see Figure 3 (b)), one exploits the following two important 
facts: 

•  One can directly compute the starting HZ-index for 
each level. For example, in a squared array, level 0 contains 
one sample and all other levels h contain 2h-1 samples. 
Therefore, the starting HZ-index of level h, Ih

start, is 2m-h, 
where m is the number of bits of the largest HZ-index. 



Figure 3: (a) Address transformation from row-major index (i; 
j) to Z-order index I (Step 1) and then to hierarchical Z-order 
index (Step 2); (b) Levels of the hierarchical Z-order for a 4x4 
array. The samples on each level remain ordered by the 
standard Z-order. 

•  Within each level, samples are ordered according to 
plain Z-order and can be traversed with the stack algorithm 
described above, using the appropriate subsampling rate. 

Using these two facts one can iterate through an array in HZ-
order by processing one level at a time, adding Ih

start to the 
I_start index of each tuple. In practice, we avoid subdividing 
the stack tuples to the level of a single sample. Instead, 
depending on the platform, we choose a parameter n and build 
a table, with the sequence of Z-order indices for an array with 
2n elements. When running the stack algorithm, each time a 
tuple t with 2n elements appears, we loop through the table 
instead of splitting t. By accessing only the necessary samples 
in strict HZ-order, the stack-based algorithm guarantees that 
only the minimal number of disk blocks are touched and each 
block is loaded exactly once. For progressively refined zooms 
in a given area, we can apply this algorithm with a minor 
variation. In particular, one would need to reduce the size of 
the bounding box represented in a tuple each time it is pushed 
back into the stack. In this way, even for a progressively 
refined zoom, one would access only the needed data blocks,    

Figure 4: (a-e) The first five levels of resolution of the 2D 
Lebesgue’s space filling curve. (f-j) The first five levels of 
resolution of the 3D Lebesgue’s space filling curve. 

each being accessed only once. 
 
 Parallel I/O for Large Scale Simulations: The multi-
resolution data layout of ViSUS discussed above is a 
progressive, linear format and therefore has a write routine that 
is inherently serial. During the execution of large scale 
simulations, it would be ideal for each node in the simulation 
to be able to write its piece of the domain data directly into this 
layout. Therefore, a parallel write strategy must be employed. 
Figure 5 illustrates different possible parallel strategies that 
have been considered. As shown in Figure 5(a), each process 
can naively write its own data directly to the proper location in 
a unique underlying binary file. This is inefficient due to the 
discontinuous access of sparse buffers within memory as well 
as the large number of small granular, concurrent accesses to 
the same file. As the data gets large, it becomes 
disadvantageous to store the entire dataset as a single large file 
and typically the entire dataset is partitioned into a series of 
smaller more manageable files. This disjointedness can be used 
by a parallel write routine. As each simulation process 
produces simulation data, it can store its piece of the overall 
dataset locally and pass the data on to an aggregator process. 
These aggregator processes can be used to gather the individual 
pieces and composite the entire dataset. In Figure 5(b), each 
process transmits a contiguous data segment to an intermediate 
aggregator. Once the aggregator’s buffer is filled, the data is 
written to disk using a single large I/O operation. Figure 5(c), 
illustrates a strategy where several noncontiguous memory 
accesses from each process are bundled into a single message. 
This approach reduces the number of small network messages 
needed to transfer data to aggregators. 

ViSUS Dataflow: In a large scale dataset, even simple 
manipulations can be very expensive when applied to each 
variable. Instead, it would be ideal to process the data based on 
need by pushing data through a processing pipeline as the user 
interacts with different portions of the data. With the ViSUS 
multi-resolution layout different regions of the data can be 
efficiently accessed at varying resolutions. Therefore, different 
compute modules can be implemented using progressive 
algorithms to operate on this data stream. Operations such as 
binning, clustering, or rescaling are trivial to implement on this 
hierarchy given some known statistics on the data, such as the 
function value range, etc. These operators can be applied to the 

After the loop the right 24 bits represent the address  I
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Figure 5: (a) Naive parallel strategy where each process writes its piece of the overall dataset into the underlying file, (b) each 
process transmits each contiguous data segment to an intermediate aggregator. Once the aggregator's buffer is complete, the data 
are written to disk, (c) several noncontiguous memory accesses are bundled into a single message to decrease communication 
overhead.

data stream as-is while the data is moving to the user,  
progressively refining the operation as more data arrives. More 
complex operations can also be reformulated to work well 
using the hierarchy. These adaptive, progressive solutions 
allow the user to explore a full resolution solution as if it were 
fully available, without the expense of the full computation. 
The ViSUS Dataflow facilitates this stream processing model 
by providing definable modules within a dataflow framework 
with a well understood API. Figure 6 gives an example of a 
dataflow for the analysis and visualization of a scientific 
simulation. This particular example is the dataflow for a 
microscopy simulation. Each of the dataflow modules provides 
streaming capability through input and output data ports which 
can be used in a variety of data transfer/sharing modes. 

ViSUS also provides a scene graph hierarchy for both 
organizing objects in a particular environment, as well as the 
sharing and inheriting of parameters. Each component in a 
model is represented by a node in this scene graph and inherits 
the transformations and environment parameters from its 
parents. Three-dimensional volume or two-dimensional slice 
extractors are children of a data set node. As an example of 
inheritance, a scene graph parameter for a transfer function can 
be applied to the scene graph node of a data set. If the extractor 
on this data set does not provide its own transfer function, it 
will be inherited. 

Portable Visualization Layer - ViSUS AppKit: The 
visualization component of ViSUS was built with the 
philosophy that a single code base can be designed to run on a 
variety of platforms and hardware ranging from mobile devices 
to powerwall displays. To enable this portability, the basic 
rendering routines were designed to be OpenGL ES 
compatible. This is a limited subset of OpenGL used primarily 
for mobile devices. More advanced rendering routines can be 
enabled if hardware support is available. In this way, the data 
visualization can scale in quality depending on the available 

hardware. Beyond the display of the data, the underlying GUI 
library can hinder portability to multiple devices. Therefore, 
ViSUS AppKit provides an abstract GUI interface that 
currently supports both the Qt and Juce libraries providing 
lightweight support for mobile platforms such as iOS and 
Android in addition to major desktop operating systems. 
ViSUS provides a generic viewer which contains standard 
visualizations such as slicing, volume rendering and 
isosurfacing. Additionally, the base system can display 2D and 
3D time-varying data. The system considers a 2D dataset as a 
special case of a slice renderer and therefore the same code 
base is used to render both 2D and 3D data. 

Webserver and Plugin: ViSUS has been extended to 
support a client-server model in addition to the traditional 
viewer. The ViSUS server can be used as a standalone 
application or a web server plugin module. The ViSUS server 
uses HTTP (a stateless protocol) in order to support many 
clients. A traditional client/server infrastructure, where the 
client established and maintained a stable connection to the 
server, can only handle a limited number of clients robustly. 
Using HTTP, the ViSUS server can scale to thousands of 
connections. The ViSUS client keeps a number (normally 48) 
of connections alive in a pool using the "keep-alive" option of 
HTTP. The use of lossy or lossless compression is configurable 
by the user. For example, ViSUS supports JPEG and EXR for 
lossy compression of byte and floating point data, respectively. 
The ViSUS server is an open client/server architecture, 
therefore it is possible to port the plugin to any web server 
which supports a C++ module (i.e., Apache, IIS). The ViSUS 
client can be enabled to cache data to local memory or to disk. 
In this way, a client can minimize transfer time by referencing 
data already sent, as well as having the ability to work offline if 
the server becomes unreachable. The ViSUS portable 
visualization framework (Appkit) also has the ability to be 
compiled as a Google Chrome, Microsoft Edge, or Mozilla 
Firefox web browser plugin. This allows a ViSUS framework 
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Figure 6. Several dataflow modules chained together to provide a light and a flexible stream processing capability. 
 

based viewer to be easily integrated into web visualization 
portals. 

III.  APPLICATION: MICROSCOPY 
The ViSUS application framework has been used at the Moran 
Eye Centre, University of Utah to visualize 2-photon2P  
microscope acquired images of axons labeled with GFP 
(through intracortical injections of AAV9-GFP) and blood  
vessels labeled with Alexa594-conjugated tomato lectin 
through transparent Clarity-treated blocks (~60mm3) of 
marmoset monkey V1. These scans yielded a 3TB  dataset with 
sufficient imaging detail for tracing. The acquired images were 
manually transferred to a local ViSUS server where the data 
was converted and stored in our multi-resolution IDX format. 
Storing the data on a server accessible to the ViSUS viewer 
applications allows the user to rapidly open the image stacks 
into a single 3D volume, which can be viewed and manually 
aligned in x, y and z (Figure 7(a)). In tissue volumes containing 
only sparse GFP-labeled axons (green channel), we used the 
stained blood vessels (red channel), which are larger than 
axons and densely weave throughout the cortex, for volume-to-
volume alignment (Figure 7(b)). After this, switching to the 
green channel (which is simultaneously imaged using multi-
channel 2P acquisition) yielded perfectly aligned sparse GFP-
labeled axons (Figure 7(c)). 

IV.  FUTURE WORK 
While ViSUS infrastructure enables interactive 

visualization and analysis of terascale microscopy data, the 
vast amount of data presents new problems in the acquisition 
process. Based on our current acquisition parameters, we have 
estimated that scanning an entire mouse brain would result in a 
31TB dataset. While big, this dataset is small compared to the 
estimated 320TB that would result from imaging labeled 
circuits at mesoscopic scale just in the macaque monkey  

 
primary visual cortex (~6,000mm3). Moreover, a slight 
increase in resolution would quickly double or quadruple the 
dataset size. A computer with hardware powerful enough to 
process and visualize that many images is beyond the scope of 
a typical laboratory budget, requiring frequent human 
intervention to offload the data to a server and continue the 
acquisition. Further, once the acquisition and the copying 
process is completed, it is required to manually convert 
millions of images into a multiresolution data format before the 
data can be visualized, causing additional delays. To address 
this sizeable issue of data transfer and conversion that currently 
hinders our ability to interactively explore and analyze 
connectomics data, we plan to expand the ViSUS streaming 
platform, by introducing a number of web services that convert 
in real time 2D images generated by the microscope to IDX 
data format. Our new acquisition system saves significant 
processing time by amortizing the conversion and copying 
effort, allowing the microscope to continuously operate to 
acquire massive datasets. As a consequence, investigators can 
remotely monitor the progress of their acquisitions which can 
be invaluable for immediate analysis of critical images. In 
addition, we plan to incorporate real time diagnostics into 
ViSUS to detect variations in the acquired image quality which 
would be particularly useful during a long acquisition to 
identify and rectify unforeseen issues. We envision our 
cyberinfrastructure to perform all these operations without 
adding additional delays providing an end-to-end scalable 
solution for terascale microscopy. 

As data sizes continue to grow, the relative ability of a user 
to manually trace neurons decreases. Automated analysis will 
become an integral part in obtaining full-scale wiring diagrams. 
These trends inevitably require migration of data to HPC 
resources and deployment of algorithms in an HPC setting. The 
ViSUS infrastructure has already been shown to perform as a 
state-of-the-art I/O infrastructure for large scale simulations, 



and we plan to add the functionality needed to buffer and 
migrate data from microscopes to the remote HPC setting, to 
design and schedule analysis workflows, and achieve long-
term storage of the raw imagery.  

V. CONCLUSIONS

Interactive visualization and data exploration are an 
indispensable part of hypothesis testing and knowledge 
discovery. Like most fields, visualization faces substantial 
scientific data management challenges that are the result of 
growth in size and complexity of the data being produced by 
simulations and collected from experiments. In the context of 
neuroscience, the large size and complexity of the NHP brain 
produces massive amounts of imaging data, creating great 
computational challenges to the study of neural circuits. To 
address these challenges, neuroscientists require novel software 
capabilities for compiling, stitching, and visualizing large 
imagery. With data of massive scale, it is often useful to 
perform a multiresolution analysis, working first with a 
smaller, coarser version of the data, then progressively refining 
the analysis as interesting features are revealed. With ViSUS 
we showed that a space-filling curve model has proven to be 
highly efficient for interactive analysis of massive 
neuroscience data. Topological methods for multi-scale, 

quantitative feature detection and analysis have also been 
demonstrated to be highly effective by providing intermediate 
concise descriptions of the data. By providing a higher level 
abstraction, they enable scientists to explore feature definitions 
interactively even if the raw data is prohibitively large in size. 
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Figure 7. Visualization of terascale microscopy data 
using ViSUS cyberinfrastructure. (A) Adjacent 
image sub-volumes of primate V1 blood vessels, 
stained with fluorescent tomato lectin, rendered in 
different colors to facilitate their alignment. (B) A 
large volume of V1 blood vessels aligned and 
visualized in 3D. (C) A zoomed in (higher 
resolution) image of aligned blood vessels (red) and 
GFP-labeled axons (green).
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